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Motivations

The solution of coupled multi-physics problems if of crucial importance nowadays.

Motivations:

→ Energy sustainability

→ Life sciences

→ Advanced manufacturing

(Some) Applications:

→ Greenhouse gas sequestration

→ Geothermal energy production

→ Seismicity / Induced seismicity

→ Computational medicine

Challenges:

→ Fully-coupled problem

→ Different space/time scales

→ Non-linearities

→ Geometrical complexity

→ Highly heterogeneous media

→ High computational costs
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Goal

The goal of the project is to develop a software
library for the finite element discretization of cou-
pled multiphysics problems by employing:

discontinuous Galerkin finite element method
on polygonal meshes,

ad-hoc models and methods to address multi-
physics interactions,

with several applications, from geophysics to
brain physiology.
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PolyDG discretization

Advantages of the PolyDG discretization [1-4]

Support of general polytopal meshes (arbitrary number of edges/faces)

Support local mesh refinement & coarsening

(Arbitrary) High-order polynomials

Robustness with respect to heterogeneous media

Scalable and parallel algorithms

Polytopal meshes II

Figure: Treatment of a nonconforming junction (red) as multiple coplanar faces. Gray elements are
pentagons, white elements are squares

5 / 49

Use of classical discrete spaces: V ℓ
h = Pℓ(Th) and Vℓ

h =
[
Pℓ(Th)

]d
,

where:
Pℓ(Th) =

{
vh ∈ L2(Ω) : vh|κ ∈ Pℓκ (κ) ∀κ ∈ Th

}
[1] P.F. Antonietti, S. Giani, P. Houston; SISC (2013)

[2] A. Cangiani, E. H. Georgoulis, P. Houston; M3AS (2014)

[3] A. Cangiani, Z. Dong, E. H. Georgoulis, et al.; Springer International Publishing (2017)

[4] P.F. Antonietti, C. Facciolà, P. Houston, et al.; SEMA SIMAI Springer Series (2021) I. Mazzieri 4 / 24



lymph



The lymph library – core

lymph: discontinuous poLYtopal methods for Multi-PHysics [1]
https://lymph.bitbucket.io/.

Written in MATLAB for 2D problems.
Parallelization with the MATLAB Parallel Toolbox.
Polymesher [2] integrated in the package for mesh generation.

[1] P.F. Antonietti, S. Bonetti, M. Botti, M. Corti, I.Fumagalli, I.Mazzieri.; ACM Trans. Math. Softw. (2025)

[2] Talischi, C., Paulino, G.H., Pereira, A. et al. Struct Multidisc Optim (2012) I. Mazzieri 5 / 24



The lymph library

and many more physics to come in the next release!

I. Mazzieri 6 / 24



The Poisson problem - model problem & discretization
We consider the Poisson problem in a polygonal domain Ω ⊂ R2:{

−∇ · (µ∇u)(x) = f(x), x ∈ Ω,

u(x) = g(x), x ∈ ∂Ω,

PolyDG discretization

find uh ∈ V ℓ
h =

{
vh ∈ L2(Ω) : vh|κ ∈ Pℓκ (κ) ∀κ ∈ Th

}
such that

adG(uh, vh) = F (vh) ∀ vh ∈ V ℓ
h ,
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κ∈Th
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and the penalization parameter αe (with Cα > 0 denoting the penalty coefficient to be properly set) defined as:

αe(x) =

Cα maxκ∈{κ+,κ−}

(
µκ

ℓ2κ
hκ

)
, x ∈ e, e ∈ FI , e ⊂ ∂κ+ ∩ ∂κ−,

Cαµκ
ℓ2κ
hκ

, x ∈ e, e ∈ FB , e ⊂ ∂κ+ ∩ ∂Ω,
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The Poisson problem in the unit square - verification test

Figure: 2D Voronoi polygonal mesh of
dimension N = 300.

Problem data

uex(x) = sin(2πx) cos(2πy)

µ(x) = 1

f(x) = 8π2 sin(2πx) cos(2πy)

g(x) = sin(2πx) cos(2πy)

Figure: Left: computed errors dG- and L2- errors as a function of the mesh size h by fixing the polynomial degree ℓ = 4. Right:
computed dG- and L2- errors as a function of the polynomial degree ℓ = 4 by fixing the number of mesh element Nel = 100.
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The Poisson problem - performances

Figure: 2D Voronoi polygonal mesh of
dimension N = 300.

Problem data

uex(x) = sin(2πx) cos(2πy)

µ(x) = 1

f(x) = 8π2 sin(2πx) cos(2πy)

g(x) = sin(2πx) cos(2πy)

To assess the performances of the method, we consider the Poisson problem on a Cartesian grid with

N = 19600, ℓ = 5 leading to 411.600 degrees of freedom.

Mat. assembly (QF) Mat. assembly (ST) RHS assembly Linear system .csv-file saving .vtk-file saving

25.6500 s 31.7024 s 5.8172 s 24.7120 s 9.3620 s 13.2213 s

Table: Computational times for a test case with 411600 dofs. We compare the quadrature-free (QF) and subtriangulation (ST)
strategies for the numerical evaluation of integrals during matrix assembly.

The numerical simulations have been performed as a serial job, using the Kami cluster (40 computing nodes
configured as follows: CPU 2x AMD EPYC 7413 24-Core Processor, RAM 512Gb) at the Department of
Mathematics, Politecnico di Milano.
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The Poisson problem - advantages of polygonal meshes

Figure: Triangular mesh of brain section made of 42891 triangles (left), agglomerated polygonal mesh made of 534 polygons
(right) with a reduction factor of ≈ 80. The cells belonging to the white zone are colored red, while those belonging to the gray
zone are colored blue.

P.F. Antonietti, M. Corti.; Proc. ENUMATH 2023 (2025) I. Mazzieri 9 / 24



The Poisson problem - advantages of polygonal meshes

Figure: Triangular mesh of brain section made of 42891 triangles (left), agglomerated polygonal mesh made of 534 polygons
(right). The cells belonging to the white zone are colored red, while those belonging to the gray zone are colored blue.

ADV: MAGNET [1] is a python package intregrated with lymph for mesh agglomeration. It includes
state of the art methods (e.g. Metis and k-means), and methods exploiting DL and GNNs.

[1] Antonietti, P.F., Caldana, M., Mazzieri, I. et al. Engineering with Computers (2025). I. Mazzieri 9 / 24



The Poisson problem - advantages of polygonal meshes

Figure: Triangular mesh of brain section made of 42891 triangles (left), agglomerated polygonal mesh made of 534 polygons
(center), and computed PolyDG solution on the polygonal grid with ℓ = 1 (right).

Figure: Computed approximation errors in the L2-norm on the triangular (red) and agglomerated (blue) meshes. Computed
errors versus the total number of degrees of freedom (left), and versus the computational time (right).
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Applications



Elastodynamics

Figure: Unstructured polygonal grid with mesh spacing of about h ≈ 160 m for material 1 to h ≈ 1500 m for material 7.

Figure: Snapshots of the computed vertical velocity (ut)y at different times t = 0.75 (top-left), t = 1.25 (top-right), t = 2.25
(bottom-left), t = 2.75 (bottom-right).
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Thermo-poroelasticity

Figure: Computed magnitude of the velocity field ∥u̇h∥ at the time instants t = 0.1s (left), t = 0.3s (center), t = 0.5s (right)

S. Bonetti, M. Botti, I. Mazzieri, et al; JCP (2023) I. Mazzieri 12 / 24



Poro-viscoelasticity

Figure: Permeability field (SPE10 dataset) and computed filtration velocity field ∥D∇ph∥ at the time instants t = 0.2 s,
t = 0.5 s, and t = 1.0 s. Glyphs are not present wherever the flow is absent.

S. Bonetti, M. Corti; JSC (2025)
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Coupled poroelasto-acoustic wave propagation

Figure: Circular porous domain Ωp (yellow) surrounded by an acoustic medium Ωa (green) (top-left). Snapshots of the
computed pressure field at different time instants: t = 0.4 s (top-right), t = 0.5 s (bottom-left), and t = 0.7 s (bottom-right).

P.F. Antonietti, S. Bonetti, M. Botti, et al.; ACM Trans. Math. Softw. (2025)
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Neurodegenerative diseases (Fisher-Kolmogorov equation)

Figure: Patterns of α-synuclein concentration at different stages of the pathology with brainstem predominancy (top) and limbic
predominancy (bottom)

P.F. Antonietti, M. Corti, S. Gomez, et al.; MATCOM (2026) I. Mazzieri 15 / 24



Coupled Stokes-multinetwork poroelasticity

Figure: Discrete tissue displacements and pressures in the whole domain (left), discrete velocity and pressure in the brain
ventricles (right).

I. Fumagalli, M. Corti, N. Parolini, et al.; JCP (2024) I. Mazzieri 16 / 24



Coupled fluid-structure interaction
Biot equation

Stokes equation Coupling conditions

Figure: Computed solutions at final time T = 1.5s. Left: velocities u̇f and u̇p + ẇp (arrows), uf,2 and u̇p,2 + ẇp,2 (color).
Right: computed pressures pf and pp

M. Botti , I. Fumagalli, I. Mazzieri.; Engineering with Computers. (2025) I. Mazzieri 17 / 24



Brain electrophysiology

Transmembrane potential. Polynomial degree. Local error indicator.

Exploiting p-adaptivity, soon to be released!

C.B. Leimer Saglio, S. Pagani, P.F. Antonietti; CMAME (2025) I. Mazzieri 18 / 24



Vulpes



The vulpes library

vulpes: Discontinuous and VirtUaL Polytopal ElementS method
https://vulpeslib.github.io/.

Written in C++ for 2D and 3D problems.
Parallelization with the MPI
Polymesher and MAGNET [1] integrated in the package for mesh generation

Mesh Generation: Triangle, TetGen, Voronoi

Linear Algebra: Eigen, Petsc

Postprocessing: VTK

Testing: Googletest

[1] Antonietti, P.F., Caldana, M., Mazzieri, I. et al. Engineering with Computers (2025). I. Mazzieri 19 / 24



Vulpes: linear elasticity problem

Find the displacement field u : Ω → Rd such that

−∇ · σ(u) = f in Ω, u = 0 on ∂Ω,

where f : Ω → Rd is the body force, σ is the stress tensor (Hooke’s law) and ϵ is the strain tensor (symmetric
gradient).

Weak form: find uh ∈ V ℓ
h s.t. for any v ∈ V ℓ

h it holds∑
K∈Th

(σ(u), ϵ(v))K −
∑

F∈Fh

⟨{σ(u)}, [v]⟩F −
∑

F∈Fh

⟨{σ(v)}, [u]⟩F +
∑

F∈Fh

⟨η[u], [v]⟩F =
∑

K∈Th

(f ,v)K .
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Vulpes: linear elasticity problem (implementation)
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Vulpes: linear elasticity problem (implementation)
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Vulpes: linear elasticity problem (output)

Test case in Ω = (0, 1)2 with λ = 2 and µ and exact solution

u(x, t) = [− sin(πx)2 sin(2πy), sin(πy)2 sin(2πx)]T .

Polynomial degree p = 5 and Nel = 512.

Other physics already implemented: Poisson’s problem, heat equation, Fisher-Kolmogorov equation.

I. Mazzieri 23 / 24



Conclusions & further developments

Main contributions:

we developed two libraries that implement DG discretization on polytopal meshes;

we documented them in a very structured manner with a focus on user-friendliness (tutorials, guides,
etc.);

we included different quadrature strategies and post-processing routines

we proposed models and Poly-DG discretizations of different multi-physics problems motivated by the
fields of application.
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Ongoing works:

Add/Enhancement of the coupling between different physics

Optimization/Improvement of parallel computation;

Development of effective solution strategies and preconditioning techniques.
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Thank you for the attention!
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