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Motivations
The solution of coupled multi-physics problems if of crucial importance nowadays.

Motivations:

— Energy sustainability

— Life sciences

— Advanced manufacturing
(Some) Applications:

— Greenhouse gas sequestration
— Geothermal energy production
— Seismicity / Induced seismicity
— Computational medicine

Seismicity / Induced seismicity Computational medicine
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— Energy sustainability

— Life sciences

— Advanced manufacturing
(Some) Applications:

— Greenhouse gas sequestration
— Geothermal energy production
— Seismicity / Induced seismicity
— Computational medicine

Challenges:

— Fully-coupled problem

— Different space/time scales
— Non-linearities

— Geometrical complexity

— Highly heterogeneous media Seismicity / Induced seismicity Computational medicine
— High computational costs
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Goal

The goal of the project is to develop a software
library for the finite element discretization of cou-
pled multiphysics problems by employing:

discontinuous Galerkin finite element method
on polygonal meshes,

ad-hoc models and methods to address multi-
physics interactions,

with several applications, from geophysics to
brain physiology.
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PolyDG discretization

Advantages of the PolyDG discretization [1-4]
@ Support of general polytopal meshes (arbitrary number of edges/faces)
@ Support local mesh refinement & coarsening
@ (Arbitrary) High-order polynomials
@ Robustness with respect to heterogeneous media
(*]

Scalable and parallel algorithms

BeneZ A
CiEN

Use of classical discrete spaces: V! = P¢(T;,) and V¥ = [Pé(’Th)]d,
where:
P(Th) = {on € L3(Q) : vnlx € P (x) V€ T}

[1] P.F. Antonietti, S. Giani, P. Houston; SISC (2013)

[2] A. Cangiani, E. H. Georgoulis, P. Houston; M3AS (2014)

[3] A. Cangiani, Z. Dong, E. H. Georgoulis, et al.; Springer International Publishing (2017)

[4] P.F. Antonietti, C. Facciola, P. Houston, et al.; SEMA SIMAI Springer Series (2021) I Mazzieri 4 / 24
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The lymph library — core

lymph: discontinuous poLYtopal methods for Multi-PHysics [1]

https://lymph.bitbucket.io/.

Written in MATLAB for 2D problems.
Parallelization with the MATLAB Parallel Toolbox.

Polymesher [2] integrated in the package for mesh generation.

Core

~

v ' |y|| ph FESpace
“ ' *  EvaluateShape2D.m

* CreateDOF.m
MatricesCoeff.m

‘ Definition of Legendre polynomials and derivatives. Evaluation of basis
L functions on quadrature points.

Mesh generation tools: based on the Polymesher library.

|
|
|

. I
* PolyMesh [
. m
. Utilities { P procedures: CSV saving, VTK saving, and scatter plot.
* Quadi «  Definition of rules, based on sub procedure.
* Quadrature.m *  Integration of over polygon for free procedure.
* IntegralOverPolygon.m
* Utilities—— —-{ C y functions. ‘
AN J
[1] P.F. Antonietti, S. Bonetti, M. Botti, M. Corti, . Fumagalli, I. Mazzieri.; ACM Trans. Math. Softw. (2025)
[2] Talischi, C., Paulino, G.H., Pereira, A. et al. Struct Multidisc Optim (2012) |. Mazzieri
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The lymph library

Core
n’ Viaalela - oo o g pomomats vt sematvn evteston o oo
v FESpa:e functions on quadrature points.
EvaluateShape2D.m

* CreateDOF.m -
* MatricesCoeffm J

r Mesh generation tools: based on the Polymesher library.
* MeshGeneration
+ PolyMesh ‘
* Utilities ‘
* PostProcessing

Quadrature * Definition of quadrature rules, based on sub-triangulation procedure.
* Quadrature.m . polygon for procedure.

* IntegralOverPolygon.m

| ing procedures: CSV saving, VTK saving, and scatter plot. }

« Utilities ———— — | complementary functions.
Laplacian Heat Elastodynamics Poroelastoacoustics
ou Pu, | Puy
=V (uVu) = f = V- (uVu)+ou=f Po gt pr g~V oyl ug) = f,
ot e e
”’W“‘” W Th o =V oy(upug) = fy
* Assembly * Assembly
« Assembly .
o (rmiem * InputData InputData P00 g o
- . * MainFunctions * MainFunctions o P VPV = fa
: MainFunctions + PostProcessi + PostProcessin;
* PostProcessing . TI° I":cesst']'g 5 St mi:" Assembly + Timelntegration
* RunSetup.m . '":"esm on . Ru"smgm InputData + RunSetup.m
+ RunMainLaplacian.m i”";q”’};’“ ol : RunMain"E'lam i i . @R
. unMainParabolic.m H PostProcessing .

and many more physics to come in the next release!
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The Poisson problem - model problem & discretization

We consider the Poisson problem in a polygonal domain Q C R2:

=V (pVu)(x) = f(x), xcQ,
u(x) = g(x), x €09,

PolyDG discretization

find up € Vif = {vp, € L2(Q) : vp|x € P= (k) Vk € Tp} such that

aqc (un,vn) = F(vy) Yo, € VY,
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We consider the Poisson problem in a polygonal domain Q C R2:

=V (pVu)(x) = f(x), xcQ,
u(x) = g(x), x €09,

PolyDG discretization (SIPG)
find uy, € Vif = {vp, € L3(Q) : vp|x € Pr (k) Vi € Ty} such that
agq(un,vp) = F(vn) Vs €V,

where Yu,v € V,f we consider:

aac(w,0) = > 1V, Vo) = > ((Hnvul [o]), + ([l €uvo}), - (eclul, [0]), )

KETH ecFp

Fo) = > (fv)e— Y ((g,qu)ef(aeg,v)e) Vo € VL.

KETY eeFp
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The Poisson problem - model problem & discretization

We consider the Poisson problem in a polygonal domain Q C R2:

=V (uVu)(x) = f(x), x€Q,
u(x) = g(x), x € 09,

PolyDG discretization (SIPG)
find uy, € Vif = {vp, € L2(Q) : vp|x € PP5 (k) V& € Tp} such that
agq(un,vp) = F(vn) Vs € Vi,

where Yu,v € Vf we consider:

agG(u,v) = Y (WVu, Vo)e — (({{MVU}L [, + ([ull, §nVo}R), — (cellul, [[v]])e)

KETH ecFy,
Fv) = Z (f,v)s — Z ((g, uVo)e — ((xﬁg,v)e) vu € V£
KETH eeFp

and the penalization parameter a. (with Cv > 0 denoting the penalty coefficient to be properly set) defined as:

2
Cq mMaX, cfy+ .} (uﬁﬁ) , X€ee€ Fr,eCOoxtNok™,

Z2
Copir =, X €Eee € Fp,e C 0T NON,

e (x) =
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The Poisson problem in the unit square - verification test

Problem data

Uex(x) = sin(27x) cos(27my)
n(x) =1
f(x) = 8n% sin(27x) cos(2my)
g(x) = sin(27z) cos(27y)

Figure: 2D Voronoi polygonal mesh of
dimension N = 300.

102 10%
-« Error L?-norm
—6—Error DG-norm
102
10
e T 6
— 10
e Error L*-norm
—&—Error DG-norm
108 108
0.08 01 012 0.14 0.16 0.18 1 2 3 4 5 6
h ‘

Figure: Left: computed errors dG- and L>- errors as a function of the mesh size h by fixing the polynomial degree £ = 4. Right:
computed dG- and L2- errors as a function of the polynomial degree £ = 4 by fixing the number of mesh element N,; = 100.

I. Mazzieri
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The Poisson problem - performances

Problem data

Uex(x) = sin(27x) cos(27my)

m(x) =1
f(x) = 8n% sin(27x) cos(2my)
g(x) = sin(27z) cos(27y)

Figure: 2D Voronoi polygonal mesh of
dimension N = 300.

To assess the performances of the method, we consider the Poisson problem on a Cartesian grid with
N = 19600, £ = 5 leading to 411.600 degrees of freedom.

Mat. assembly (QF) ‘ Mat. assembly (ST) ‘ RHS assembly ‘ Linear system ‘ .csv-file saving ‘ .vtk-file saving
25.6500 s \ 31.7024 s | s8172s | 2471205 | 936205 | 132213 s

Table: Computational times for a test case with 411600 dofs. We compare the quadrature-free (QF) and subtriangulation (ST)
strategies for the numerical evaluation of integrals during matrix assembly.

The numerical simulations have been performed as a serial job, using the Kami cluster (40 computing nodes
configured as follows: CPU 2x AMD EPYC 7413 24-Core Processor, RAM 512Gb) at the Department of

Mathematics, Politecnico di Milano.
I. Mazzieri 9 / 24



The Poisson problem - advantages of polygonal meshes

Figure: Triangular mesh of brain section made of 42891 triangles (left), agglomerated polygonal mesh made of 534 polygons
(right) with a reduction factor of = 80. The cells belonging to the white zone are colored red, while those belonging to the gray
zone are colored blue.

P.F. Antonietti, M. Corti.; Proc. ENUMATH 2023 (2025) I. Mazzieri 9 /24



The Poisson problem - advantages of polygonal meshes

Figure: Triangular mesh of brain section made of 42891 triangles (left), agglomerated polygonal mesh made of 534 polygons
(right). The cells belonging to the white zone are colored red, while those belonging to the gray zone are colored blue.

ADV: MAGNET [1] is a python package intregrated with 1ymph for mesh agglomeration. It includes
state of the art methods (e.g. Metis and k-means), and methods exploiting DL and GNNs. -

[1] Antonietti, P.F., Caldana, M., Mazzieri, |. et al. Engineering with Computers (2025) I. Mazzieri 9 /24



The Poisson problem - advantages of polygonal meshes

Figure: Triangular mesh of brain section made of 42891 triangles (left), agglomerated polygonal mesh made of 534 polygons
(center), and computed PolyDG solution on the polygonal grid with ¢ = 1 (right).

) error vs DOFs Approximation error vs ional time
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Figure: Computed approximation errors in the L2-norm on the triangular (red) and agglomerated (blue) meshes. Computed
errors versus the total number of degrees of freedom (left), and versus the computational time (right).

I. Mazzieri
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Applications



Elastodynamics

MATERIALS

1. 3 4 5 7.

sl —
1.00e+d
8.00e+3
Y (m)
400043

u .
o p—Z—V‘o(u)=f, ]IlQX(O,T],
10004 150wa 2000w 280erd at

Figure: Unstructured polygonal grid with mesh spacing of about h &~ 160 m for material 1 to h &~ 1500 m for material 7.

Figure: Snapshots of the computed vertical velocity (u;), at different times ¢ = 0.75 (top-left), t = 1.25 (top-right), t = 2.25
(bottom-left), t = 2.75 (bottom-right).

I. Mazzieri
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Thermo-poroelasticity

pii+ pjw— V.o =f in Q x (0, Tyl
prii+ pwW+K 'W+Vp=§ in Q x (0, Tr],
cop —boT +aV-it+V-w=0 in 2 x (0, Tf],

ao (T +71T) —bo (p+TP) +B(V-u+TV-ii) — V-(OVT)=H inQx (0, Ty],

Figure: Computed magnitude of the velocity field |[uy, || at the time instants t = 0.1s (left), ¢ = 0.3s (center), ¢t = 0.5s (right)

S. Bonetti, M. Botti, |. Mazzieri, et al; JCP (2023) I. Mazzieri



Poro-viscoelasticity

pi — V- (2p(e(u) + d1e(11))) = VMV -u+6V-1)) +V(yp) =f  in Q x (0,TY],
dop+yV-u—V-(DVp) =g in Q x (0, Ty).

t=102s t=1.0s

llwall Im/s]
0.001 0.005 0.010 0.020  0.050 0.100 0.200  0.500 1.000 2.000 10.000

Figure: Permeability field (SPE10 dataset) and computed filtration velocity field [ DV py, || at the time instants ¢t = 0.2,
t =0.5s, and t = 1.0s. Glyphs are not present wherever the flow is absent.
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Coupled poroelasto-acoustic wave propagation

600

400

o pi+ psw — V- (C: e(u)) — BmV(BV -u+V -w) = f, in Q,,
T pfil+pw11';+gw—mv(ﬁv~u+v~w)=gp in Q,,
PaC2P =V - (paV9) = pafa in Qq,

—(C: e(u) + Bm(BV - u+ V- w)I)n, = papn, onI'y,
(@ +w) -n,=-Vy-n, onTy,
500 —m(BV -u+V-w)— 71— 1) n, = p¢ on Iy,

0
x[m]

Figure: Circular porous domain €, (yellow) surrounded by an acoustic medium €, (green) (top-left). Snapshots of the
computed pressure field at different time instants: ¢ = 0.4 s (top-right), ¢ = 0.5 s (bottom-left), and ¢ = 0.7 s (bottom-right).

I. Mazzieri 14 / 24



Neurodegenerative diseases (Fisher-Kolmogorov equation)

Oic—V - (DVe)=ac(l —c)=: f(¢) in Qr,
(DVe) -ng=0 on T x (0,7),

t =0 years t =5 years t = 10 years t = 15 years t = 20 years

PRHG P
PO PH

0.0 01 02 03 04 05 06 07 08 09 10
[ ]

Figure: Patterns of a-synuclein concentration at different stages of the pathology with brainstem predominancy (top) and limbic
predominancy (bottom)

P.F. Antonietti, M. Corti, S. Gomez, et al.; MATCOM (2026) I. Mazzieri 15 / 24



Coupled Stokes-multinetwork poroelasticity

padhd ~ V- ca(d) + X, o Vpy = fu, in Qa x (0,7], ca(d)na — Yoy cxpena + or(u)ng — prg =0,
Gop; + V- (aﬁtd— %K,Vp_‘) LK Vg ma =0,

+ s oy —p) +6imy = g, inQu x (0,7, weng b (d - L KeVpe) na =0,
provu—V - oc(u) + Vp = fr, in Q¢ x (0, 7], STOKES P =p—or(wng ng,
Vou=0, inQ % (0,7), (or(uw)ng —png) Ang =0,

cerebrospinal fluid (CSF)

3 Y= 0.25s - S t=05s

queduct

~
4/ {

b w Y -
Vel ¢ — 0.755 Py -1
~N
- 4
- ~
00 CSF vzlnf'gv [mm/s] 30
1 -
03 050 03

CSF pressure [Pa]

Figure: Discrete tissue displacements and pressures in the whole domain (left), discrete velocity and pressure in the brain
ventricles (right).

I. Fumagalli, M. Corti, N. Parolini, et al.; JCP (2024)

I. Mazzieri
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Coupled fluid-structure interaction

Biot equation

Pty + pyibp = V- 0p = £, in 2, x (0,71, Stokes equation . .
Priy + putby + Loy + Vpp = gy, in R x (0,7, q ) Coupling conditions
o - _
up =0, on T x (0,7, (@up) Hdev(Ey) = V(o 'V Bp) vy = Fy, in @y x (0,1], (@t + ty) - 7, = 2 -1y, (flux conservation),
wy -y =0, on TP x (0,T], skew(3%/) = 0, n Q{JX 1), 3¢ny, - ny, =7y - 0y, — pp, (Robin condition),
apn, =gy, on T x (0,T], v V- =G, p on E{v x (g.;], %y - m, = 0y, ny, (normalstress conservation),
n=a, on I‘f’  (0.7), Zmy = Jo g7 (s) ds, onld :{(0) ), 3y, An, = oyn, Any = 0(us — @,) Ay, (BJS condition).
P . . 7=0, 7] s
Up = Upo,  Up = Vo, n Q, x {0},
Wy = Wy, Wp = Zpo, in Qp, x {0},
velocity pressure
o -5.0e+00 3 2 -1 010e+00 -1.0e+00 10 20 30 40e+01
Iy — e — i B i

e i
I I

tef ight
T Iy

s
Fh

Figure: Computed solutions at final time 7" = 1.5s. Left: velocities iy and i, + W, (arrows), uys o and i, 2 + Wy, 2 (color).
Right: computed pressures py and p,

M. Botti, I. Fumagalli, |. Mazzieri.; Engineering with Computers. (2025) I. Mazzieri 17 / 24



Brain electrophysiology

;(mCm o~V EV)+p fuy) =1, nQx(0,T]

2 4 mu,y) =0 inQx (0,71,
IVu-n=0 on dQ % (0, T1,
u(0) =u°, y(0) = in Q.

0 E3 B T3 69 I3 3 EXT ) 3 0 A T3 B9 Y BN TN 6 T 6

Transmembrane potential (mV) Polynomial degree Indicator

-70 -60 -50 -40 -30 20 -10 O 10 20 30 40 50 60 2 3 1.9e-26 0.1 0.15 0.2 0.25 0.3 0.35 04 50&01
—— L — ij— ‘
Transmembrane potential. Polynomial degree. Local error indicator.

Exploiting p-adaptivity, soon to be released!

C.B. Leimer Saglio, S. Pagani, P.F. Antonietti; CMAME (2025) I. Mazzieri 18 / 24



Vulpes



The vulpes library

vulpes: Discontinuous and VirtUaL Polytopal ElementS method
https://vulpeslib.github.io/.

Written in C++ for 2D and 3D problems.
Parallelization with the MPI
Polymesher and MAGNET [1] integrated in the package for mesh generation

@ Mesh Generation: Triangle, TetGen, Voronoi
@ Linear Algebra: Eigen, Petsc

@ Postprocessing: VTK

@ Testing: Googletest

[1] Antonietti, P.F., Caldana, M., Mazzieri, |. et al. Engineering with Computers (2025). I. Mazzieri 19 / 24



Vulpes: linear elasticity problem

Find the displacement field u : Q — R such that
—V-o(u)=f inQ, wu=0 ondQ,

where f : Q — R? is the body force, o is the stress tensor (Hooke's law) and € is the strain tensor (symmetric

gradient).

Weak form: find u; € V,f s.t. for any v € V,f it holds

D (ou)e)r — Y He@}hr— D> Ho@}uhr+ Y @l phr= D> (fv)k.

KeTy FeFy, FeFy FeFy, KeTy,

I. Mazzieri 20 / 24



Vulpes: linear elasticity problem (implementation)

Weak form: find u; € V;f s.t. forany v € V;f it holds

[ Y, (o(w),e(@)x— 3 {o(w)}, [vhr —[Z (o ()} [uhr

KeTp FeFp FeFp

+ ) lul,ohr =| > (Fv)x

FeFp KeTp

auto wf_stiff = twice_mu * fe::inner(fe::symgrad(u), fe::symgrad(v)) +
lambda * (fe::trsymgrad(u) * fe::trsymgrad(v));

auto n = fe::normal(fe_space);
auto wf_IT = bc * (twice_mu x fe::inner(fe::symgrad(u), fe::outer(v, n)) +
lambda * (fe::trsymgrad(u) * fe::inner(v, n)));
auto wf_ITn =
half x (twice_mu x fe::inner(fe::symgrad(u), fe::outer(fe::neigh(v), n)) +
lambda * (fe::trsymgrad(u) * fe::inner(fe::neigh(v), n)));

auto wf_S = gamma * (lambda_plus_twice_mu % fe::inner(u, v));
auto wf_Sn = —(gamma * (lambda_plus_twice_mu * fe::inner(u, fe::neigh(v))));

[ auto wf_F = fe::inner(force, v)a

I. Mazzieri 21 /24



Vulpes: linear elasticity problem (implementation)

Weak form: find uy, € V,f s.t. forany v e Vhe it holds

{ Y (o(u)e@)x|= ) ol whr— Y Ho@)} [uhr + Y @lul,[vDr = Y (£,0)

KeTp, ] FeFy, FeFy, FeFy, KeTp,

[ auto wf_stiff = twice_mu % fe::inner(fe::symgrad(u), fe::symgrad(v)) +
lambda * (fe::trsymgrad(u) % fe::trsymgrad(v));
// Local computation over K for subtessellation
const auto Aloc = int_simplexify.getIntegral(&wf_stiff); sub-tessellation
// Local computation over K for quadrature free
const auto Alocq = int_qfree.getIntegral(&wf_stiff); <« [quadraturefree

// Assembly
system_matrix.insertValuesBlocked(Aloc.data(), ii, ii, ndof_comp);

// Solution -- wrapper for petsc
{ la::LinearSolver solver(
la::LinearSolver::PrecondOnly, la::LinearSolver::LU);
solver.setOperators(system_matrix);
solver.solve(force_vec, solution);}

I. Mazzieri

K.
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Vulpes: linear elasticity problem (output)

Test case in 2 = (0,1)2 with A = 2 and x and exact solution

u(ax, t) = [—sin(mz)? sin(2my), sin(ry)? sin(27z)] 7.

Polynomial degree p = 5 and N.; = 512.

e
-1.0e+00 0.5 0.5 1.0e+00
{

! \—\

Other physics already implemented: Poisson’s problem, heat equation, Fisher-Kolmogorov equation.

I. Mazzieri
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Conclusions & further developments

Main contributions:
@ we developed two libraries that implement DG discretization on polytopal meshes;

@ we documented them in a very structured manner with a focus on user-friendliness (tutorials, guides,
etc.);

@ we included different quadrature strategies and post-processing routines

@ we proposed models and Poly-DG discretizations of different multi-physics problems motivated by the
fields of application.

I. Mazzieri 24 / 24



Conclusions & further developments

Main contributions:
@ we developed two libraries that implement DG discretization on polytopal meshes;

@ we documented them in a very structured manner with a focus on user-friendliness (tutorials, guides,

etc.);
@ we included different quadrature strategies and post-processing routines
we proposed models and Poly-DG discretizations of different multi-physics problems motivated by the

fields of application.

0 Add/Enhancement of the coupling between different physics
0 Optimization/Improvement of parallel computation;

@ Development of effective solution strategies and preconditioning techniques.

I. Mazzieri 24 / 24



Thank you for the attention!
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