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Input Geometries
Triangulation as input

#f = 29164
∠min = 10−3◦

#farea<10−5 = 349
0 180

Fine triangulation of the surface:
Always available: CAD, Scan
Exact representation of the geometry
Correct topology

BUT
Large amount of elements
No guaranties on elements quality
No guaranties on elements size/degeneracy
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Input Geometries
Remeshing of the geometry

#f = 133600
∠min = 15.4◦

#farea<10−5 = 0
0 180

Remesh using a parametrization of the surface
Simple linear element mesh
Provide quality elements
Ensures non degenerate elements
Not exact geometry but close enough

Still a large amount of elements
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Input Geometries
Remeshing of the geometry for large elements

#f = 1688
∠min = 6.5◦

#farea<10−5 = 0
0 180

Remesh using a parametrization of the surface
Simple linear element mesh
Provide quality elements
Ensures non degenerate elements
Not exact geometry but close enough

To get a small number of elements

The Idea: use geodesic path instead of
straight lines.
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The Aim
Intrinsic Remeshing of Closed Surfaces

Input: dense (and low quality) triangulation
Tool: geodesic shortest path between points
Benefits: intrinsic lengths and angles

exact geometry
Output: segmentation of geometry
(Additional step: fit high-order elements)

Challenge 1: Fast computation of exact geodesic
shortest paths on the triangulation.

Challenge 2: Implementing an intrinsic meshing
algorithm.
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Challenge 1 - Fast Exact Geodesics
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Compute Geodesics
Unfold & Compare

Always use the shortest path between two vertices as geodesic.

When unfolded, it correspond to planar distances.

To find exact shortest geodesic distances:
Represent unfoldings
Compute all the possible unfoldings
Compare the distances

The MMP or ICH Algorithms.

[Mitchell, J. S., Mount, D. M., & Papadimitriou, C. H. (1987). The discrete geodesic problem]
[Chen, J., & Han, Y. (1990, May). Shortest paths on a polyhedron]
[Xin, S. Q., & Wang, G. J. (2009). Improving Chen and Han’s algorithm on the discrete geodesic problem]
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Compute Geodesics
Unfold & Compare

MMP and ICH algorithms:

Only distance to edges is needed
An interval share the same unfolding.
Only the position of the source in unfloded
plane is needed.
The shortest path can be found through
backtracking towards the source.

Intervals as elementary objects.

7 / 19



Compute Geodesics
Interval representation

p

s

start end

x

y

d

5 variables per interval.

d

Pseudo-sources (boundary/saddle points)

For MMP:

Interval intersection

For ICH: filtering of intervals w.r.t. distances to vertices.
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Compute Geodeiscs
Interval propagation

Distance propagation from edges to edges.
Ordered propagation to reach with
minimum distance.
Backtracking gives the shortest path.

Dijsktra like propagation
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Compute Geodesics
Accelerate the computation

Classic MMP

A∗ search algorithm: propagate first the element with
the lowest expected total distance.

Comparison values:
Classic MMP: geodesicDistance(source, point)
A∗ search: geodesicDistance(source, point)

+ minDistance(point, destination)

30 times faster and 20 times less intervals
propagated (on a 160,000 faces geometry).

Note: a similar methods can find the point equidistant
from three sources, if it exists. A∗ search
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Challenge 2 - Intrinsic Meshing
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Local Optimizations
Swap Edge

Extrinsic

Intrinsic

No triangle created
Criterion: empty circumcircles
(Delaunay; optimize angles)
No particular order required
Common edges must intersect

Split & Collapse Edge

Two triangles added/removed
Criterion: target edge length
Order matters:

Split largest first
Collapse smallest first

New edges must be inside the cavity
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First Pipeline

Swap edges
for i = 1 to N do

Collapse edges
Split edges

end for

Collapse edges: remove small edges.
Split edges: remove large edges.
Swap edges: optimize triangle quality at the
beginnig and after every other operation.
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Problematic geodesic triangles

Need "quality" triangles

Impose bounds on intrinsic angles.

Split Triangle

Two triangles added
Criterion: bounds on angles
Not stricktly local:

Target triangle might not be split
Other triangle might be split

No particular order is required.
New edges must stay inside the cavity
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Final Pipeline

Swap edges
for i = 1 to N do
Collapse edges∗
Split edges
Split triangles

end for

Collapse edges∗: remove small edges and while ensuring angles in the bounds.
Split edges: remove large edges.
Split triangle: split large triangles with angles out of the bounds.
Swap edges: optimize triangle quality at the beginning and after every other operations.
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Final Pipeline

Limit the angles of the triangles. (typically between 20◦ and 130◦)

In order to converge: edges can not be collapsed w.r.t. angles bounds
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Benchmarks

#Faces: 46,000
Time: 40 seconds
#Triangles: 670
Min angle: 13.9◦

Max angle: 129.7◦

#Faces: 196,000
Time: 55 seconds
#Triangles: 1184
Min angle: 20.4◦

Max angle: 129.9◦

#Faces: 754,000
Time: 307 seconds
#Triangles: 3108
Min angle: 19.2◦

Max angle: 129.6◦

#Faces: 1,960,000
Time: 635 seconds
#Triangles: 2442
Min angle: 18.2◦

Max angle: 135.9◦
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Example
Intrinsic remeshing of a gear

Initial mesh

#f = 29164
∠min = 10−3◦

#farea<10−5 =
349 0 180

Intrinsic meshing
(∠ > 20◦)

#f = 1692
∠min = 20.1◦

#farea<10−5 = 0
0 180

Intrinsic meshing
(∠ > 20◦, er < 1.1)

#f = 3954
∠min = 3.3◦

#farea<10−5 = 0
0 180
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Perspectives

Intrinsic segmentation

Intrinsic remeshing and high order fitting

A∗ search

Current bottleneck: time to compute geodesics.
To explore: fit a way to exploit the raw segmentation.
Next: open surfaces and volumes

Contact: tim.gabriel@uliege.be

19 / 19


	Challenge 1 - Fast Exact Geodesics
	Challenge 2 - Intrinsic Meshing

