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Input Geometries .I U

Triangulation as input

Fine triangulation of the surface:

P Always available: CAD, Scan

P> Exact representation of the geometry
P Correct topology

BUT

P Large amount of elements

P No guaranties on elements quality
#f = 29164

Zimin = 10_30
#farea<10*5 =349

P> No guaranties on elements size/degeneracy
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Input Geometries .I ’4/

Remeshing of the geometry

Remesh using a parametrization of the surface
P Simple linear element mesh

P Provide quality elements

P Ensures non degenerate elements

P Not exact geometry but close enough

Still a large amount of elements

#f = 133600
Lmin = 15.4°
#farea<10*5 =0

0 180
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Input Geometries .I U

Remeshing of the geometry for large elements

Remesh using a parametrization of the surface
P Simple linear element mesh

P Provide quality elements

P> Ensures non degenerate elements

P Not exact geometry buteloseenough

To get a small number of elements

The Idea: use geodesic path instead of

#f = 1688 straight lines.

Z min = 6.5°
#farea<10*5 =0

0 180
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The Aim

Intrinsic Remeshing of Closed Surfaces

P Input: dense (and low quality) triangulation
P Tool: geodesic shortest path between points
P Benefits: intrinsic lengths and angles

exact geometry
P Output: segmentation of geometry

P (Additional step: fit high-order elements)

Challenge 1: Fast computation of exact geodesic
shortest paths on the triangulation.

Challenge 2: Implementing an intrinsic meshing

algorithm.
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Challenge 1 - Fast Exact Geodesics



] >
Compute Geodesics .I “I
Unfold & Compare

Always use the shortest path between two vertices as geodesic.

When unfolded, it correspond to planar distances.

To find exact shortest geodesic distances:

P Represent unfoldings
P> Compute all the possible unfoldings
P Compare the distances

The MMP or ICH Algorithms.

[Mitchell, J. S., Mount, D. M., & Papadimitriou, C. H. (1987). The discrete geodesic problem]
[Chen, J., &Han, Y. (1990, May). Shortest paths on a polyhedron]
[Xin, S. Q., & Wang, G. J. (2009). Improving Chen and Han’s algorithm on the discrete geodesic problem]
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Compute Geodesics
Unfold & Compare

MMP and ICH algorithms:

P Only distance to edges is needed
P Aninterval share the same unfolding.

P> Only the position of the source in unfloded
plane is needed.

P> The shortest path can be found through
backtracking towards the source.

Intervals as elementary objects.

By
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Compute Geodesics - U

Interval representation

start end
<+ <>

Pseudo-sources (boundary/saddle points)

For MMP:

WYY

Interval intersection

P> 5variables per interval.

For ICH: filtering of intervals w.r.t. distances to vertices.
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Compute Geodeiscs
Interval propagation

P Distance propagation from edges to edges.

P Ordered propagation to reach with
minimum distance.

P Backtracking gives the shortest path.

Dijsktra like propagation

A /N
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Compute Geodesics . ﬁf

Accelerate the computation
A* search algorithm: propagate first the element with
the lowest expected total distance.
Comparison values:
Classic MMP:  geodesicDistance(source, point)

A* search: geodesicDistance(source, point)
+ minDistance(point, destination)

Classic MMP

30 times faster and 20 times less intervals
propagated (on a 160,000 faces geometry).

Note: a similar methods can find the point equidistant
from three sources, if it exists. A* search
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Challenge 2 - Intrinsic Meshing
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Local Optimizations <

Swap Edge Split & Collapse Edge
L &

> i d
b No triangle created Two triangles added/remove

P> Criterion: h
P Criterion: empty circumcircles Criterion: target edge lengt

(Delaunay; optimize angles) P Order matters:
Split largest first
Collapse smallest first

P> New edges must be inside the cavity

< i
I

P No particular order required
P Common edges must intersect

12/19



First Pipeline

Swap edges
fori=1toNdo
Collapse edges
Split edges
end for

P Collapse edges: remove small edges.
P Split edges: remove large edges.

P Swap edges: optimize triangle quality at the
beginnig and after every other operation.
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P Two triangles added
P Criterion: bounds on angles
P Not stricktly local:

Target triangle might not be split
Other triangle might be split

Need "quality" triangles P No particular order is required.
P New edges must stay inside the cavity
Impose bounds on intrinsic angles.
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Final Pipeline

Swap edges
fori=1toNdo
Collapse edges*
Split edges
Split triangles
end for

P Collapse edges*: remove small edges and while ensuring angles in the bounds.

P Split edges: remove large edges.

P sSplit triangle: split large triangles with angles out of the bounds.

P Swap edges: optimize triangle quality at the beginning and after every other operations.

15/19



Final Pipeline . “"

Limit the angles of the triangles. (typically between 20° and 130°)

In order to converge: edges can not be collapsed w.r.t. angles bounds
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Benchmarks . “"

#Faces: 46,000
Time: 40 seconds
#Triangles: 670
Min angle: 13.9°
Max angle: 129.7°

#Faces: 196,000
Time: 55 seconds
#Triangles: 1184
Min angle: 20.4°
Max angle: 129.9°

#Faces: 754,000
Time: 307 seconds
#Triangles: 3108
Min angle: 19.2°
Max angle: 129.6°

#Faces: 1,960,000
Time: 635 seconds
#Triangles: 2442
Min angle: 18.2°
Max angle: 135.9°
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Example . ’1;

Intrinsic remeshing of a gear

Initial mesh Intrinsic meshing Intrinsic meshing
(£ > 20°) (£ >20°e <1.1)

#f = 29164

AP #f = 1692 ##f = 3954
#n;ln . s = Zmin = 20.1° Zmin = 3.3°
area<10 Htgreac10-5 = 0 H#farea<10-5 =0

349 0 180 0 180 0 180
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Example . ?l/'

Intrinsic remeshing of a gear

Initial mesh Intrinsic meshing Intrinsic meshing
(£ > 20°) (£ >20°¢e <1.1)

.

#f =3954
Lmin = 3.3°
:/'%‘éfarea<10*5 =0

#f = 29164

Zmin = 1073° #f = 1692 )

Hloreac1i0-5 = Zmin = 20.1
#farea<10*5 =0

349 0 180

18/19



Perspectives

Intrinsic segmentation

Intrinsic remeshing and high order fitting

P Current bottleneck: time to compute geodesics.
P To explore: fit a way to exploit the raw segmentation.
P Next: open surfaces and volumes

Contact: tim.gabrielQuliege.be

A* search
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