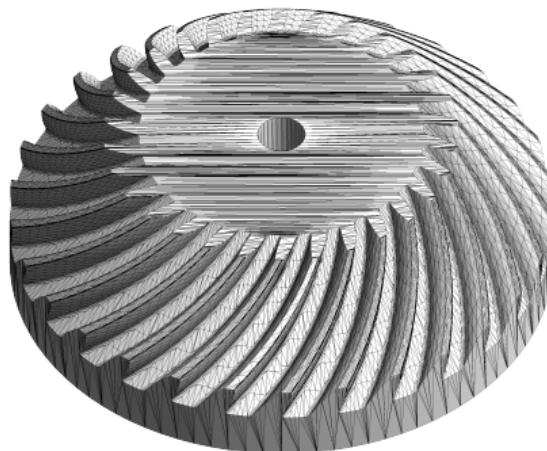


Intrinsic Surface Meshing Using Geodesic Distances

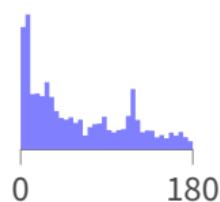
Tim GABRIEL – NEMESIS GMSH

Input Geometries

Triangulation as input



$\#f = 29164$
 $\angle_{\min} = 10^{-3}^\circ$
 $\#f_{area < 10^{-5}} = 349$



Fine triangulation of the surface:

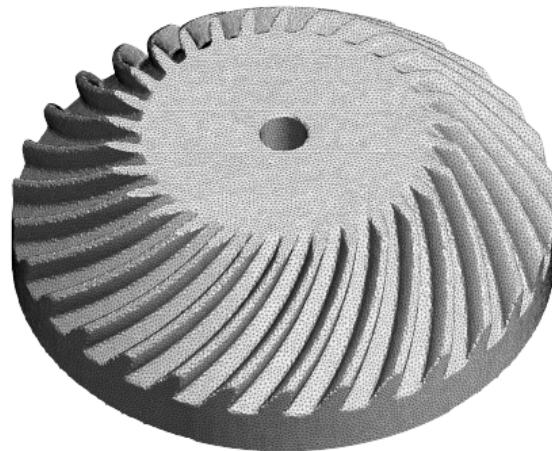
- ▶ Always available: CAD, Scan
- ▶ Exact representation of the geometry
- ▶ Correct topology

BUT

- ▶ Large amount of elements
- ▶ No guarantees on elements quality
- ▶ No guarantees on elements size/degeneracy

Input Geometries

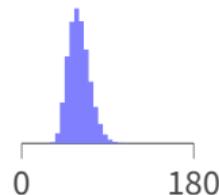
Remeshing of the geometry



$\#f = 133600$

$\angle_{\min} = 15.4^\circ$

$\#f_{area < 10^{-5}} = 0$



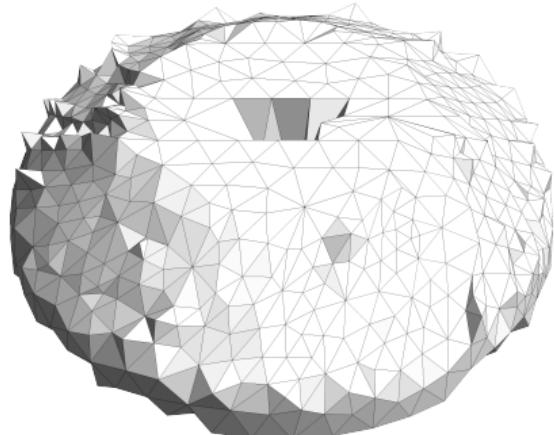
Remesh using a parametrization of the surface

- ▶ Simple linear element mesh
- ▶ Provide quality elements
- ▶ Ensures non degenerate elements
- ▶ Not exact geometry but close enough

Still a large amount of elements

Input Geometries

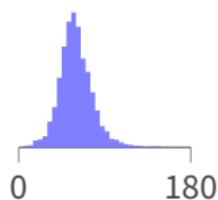
Remeshing of the geometry for large elements



$\#f = 1688$

$\angle_{\min} = 6.5^\circ$

$\#f_{area < 10^{-5}} = 0$



Remesh using a parametrization of the surface

- ▶ Simple linear element mesh
- ▶ Provide quality elements
- ▶ Ensures non degenerate elements
- ▶ Not exact geometry but close enough

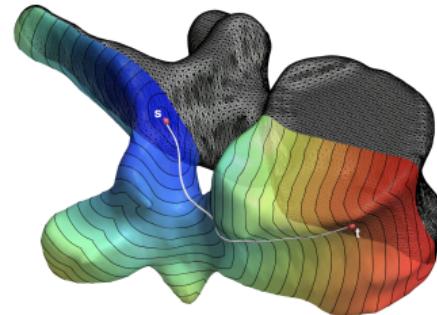
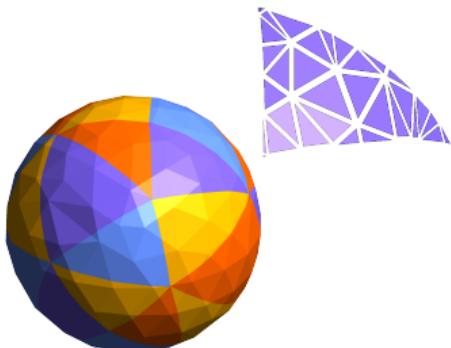
To get a small number of elements

The Idea: use geodesic path instead of straight lines.

The Aim

Intrinsic Remeshing of Closed Surfaces

- ▶ Input: dense (and low quality) triangulation
- ▶ Tool: geodesic shortest path between points
- ▶ Benefits:
 - ▶ intrinsic lengths and angles
 - ▶ exact geometry
- ▶ Output: segmentation of geometry
- ▶ (Additional step: fit high-order elements)



Challenge 1: Fast computation of exact geodesic shortest paths on the triangulation.

Challenge 2: Implementing an intrinsic meshing algorithm.

Challenge 1 - Fast Exact Geodesics

Compute Geodesics

Unfold & Compare

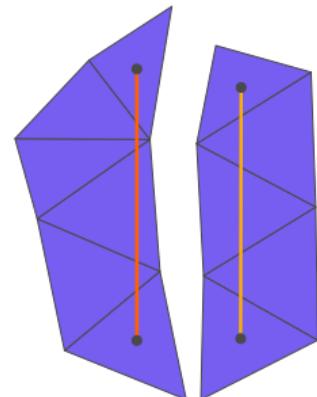
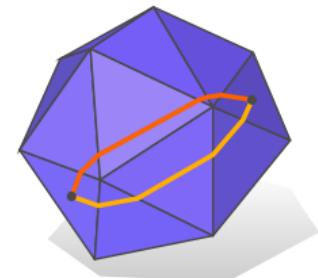
Always use the shortest path between two vertices as geodesic.

When unfolded, it correspond to planar distances.

To find exact shortest geodesic distances:

- ▶ Represent unfoldings
- ▶ Compute all the possible unfoldings
- ▶ Compare the distances

The MMP or ICH Algorithms.



[Mitchell, J. S., Mount, D. M., & Papadimitriou, C. H. (1987). The discrete geodesic problem]

[Chen, J., & Han, Y. (1990, May). Shortest paths on a polyhedron]

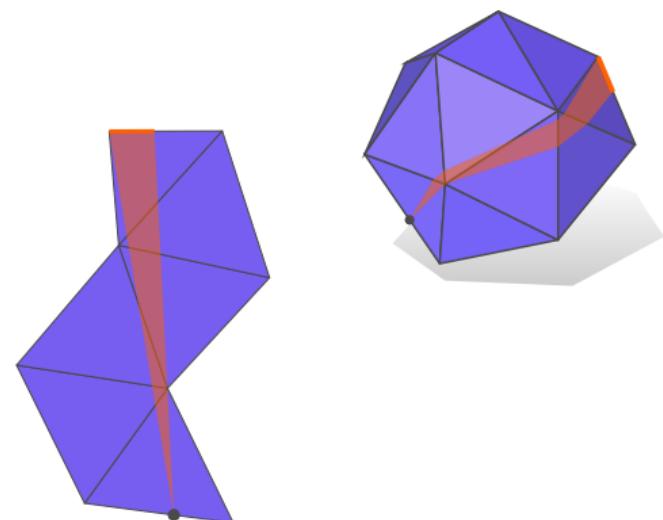
[Xin, S. Q., & Wang, G. J. (2009). Improving Chen and Han's algorithm on the discrete geodesic problem]

Compute Geodesics

Unfold & Compare

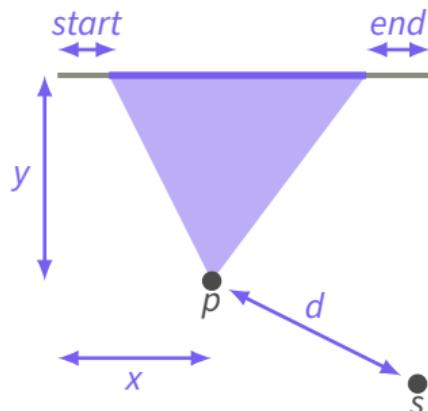
MMP and ICH algorithms:

- ▶ Only distance to edges is needed
- ▶ An interval share the same unfolding.
- ▶ Only the position of the source in unfolded plane is needed.
- ▶ The shortest path can be found through backtracking towards the source.
- ▶ Intervals as elementary objects.

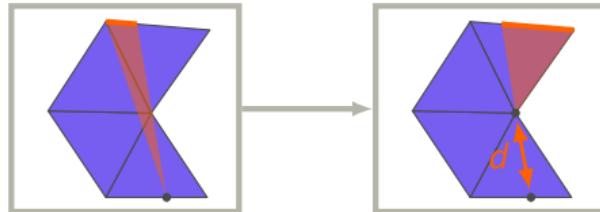


Compute Geodesics

Interval representation

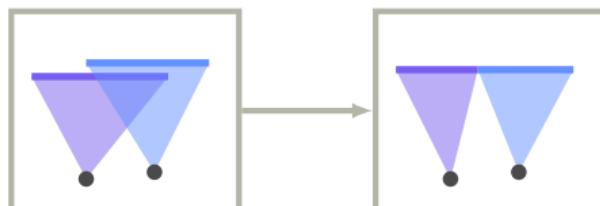


► 5 variables per interval.



Pseudo-sources (boundary/saddle points)

For MMP:



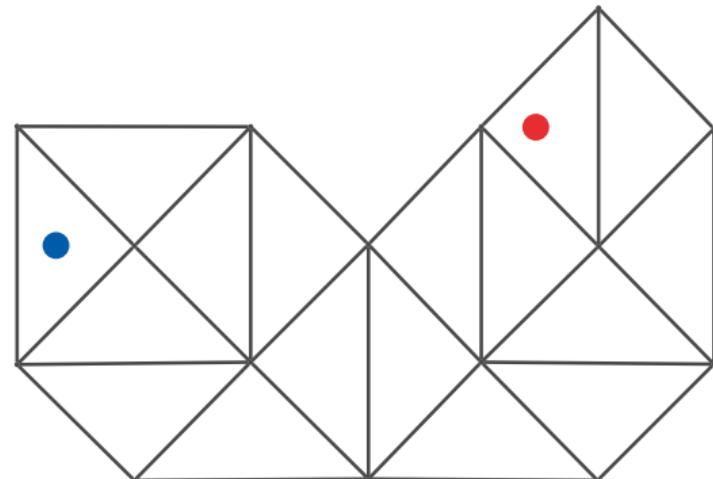
Interval intersection

For ICH: filtering of intervals w.r.t. distances to vertices.

Compute Geodeiscs

Interval propagation

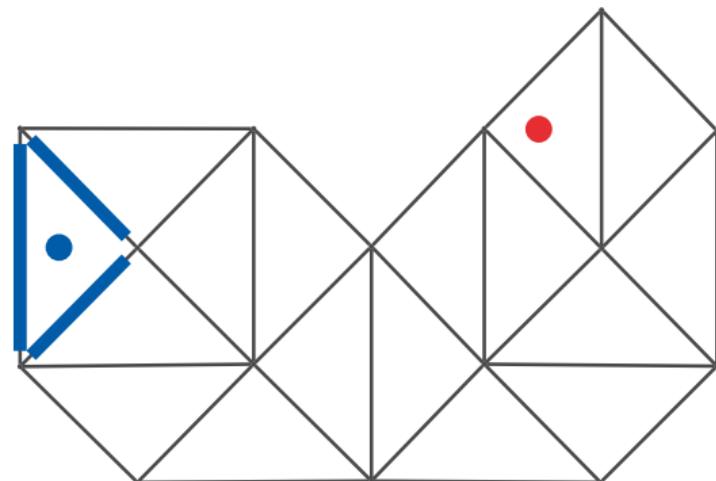
- ▶ Distance propagation from edges to edges.
- ▶ Ordered propagation to reach with minimum distance.
- ▶ Backtracking gives the shortest path.
- ▶ Dijkstra like propagation



Compute Geodeiscs

Interval propagation

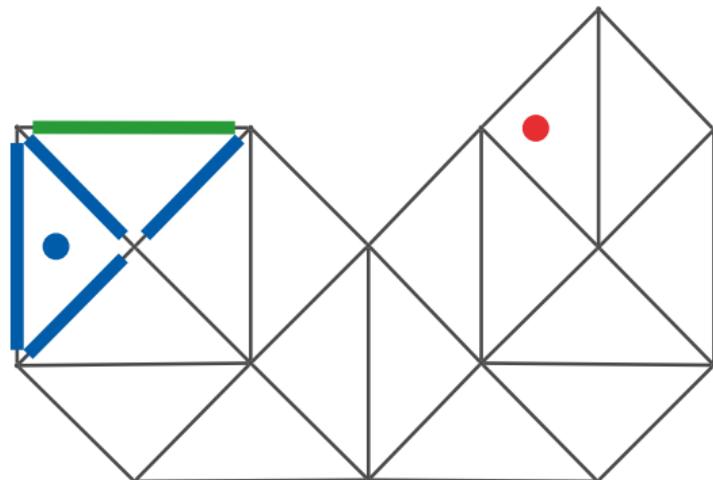
- ▶ Distance propagation from edges to edges.
- ▶ Ordered propagation to reach with minimum distance.
- ▶ Backtracking gives the shortest path.
- ▶ Dijkstra like propagation



Compute Geodeiscs

Interval propagation

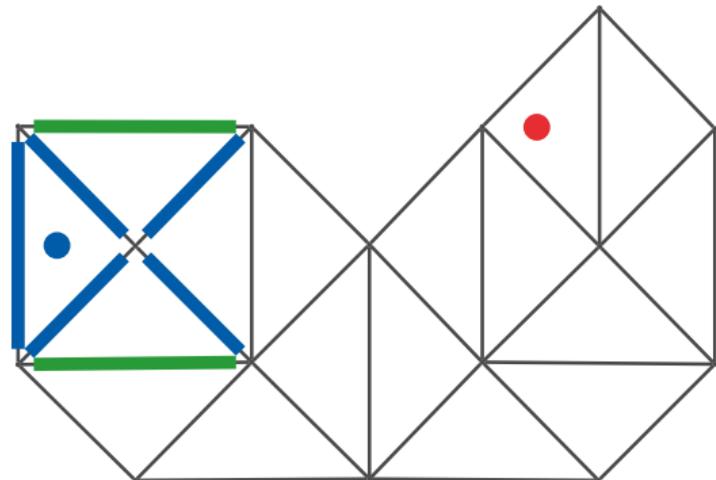
- ▶ Distance propagation from edges to edges.
- ▶ Ordered propagation to reach with minimum distance.
- ▶ Backtracking gives the shortest path.
- ▶ Dijkstra like propagation



Compute Geodeiscs

Interval propagation

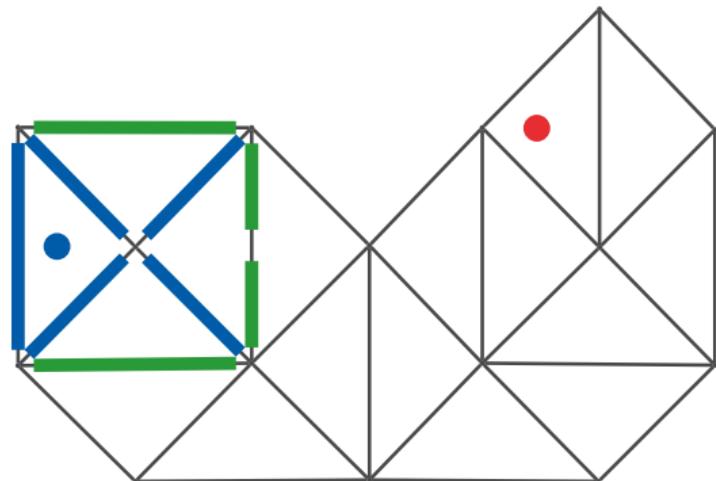
- ▶ Distance propagation from edges to edges.
- ▶ Ordered propagation to reach with minimum distance.
- ▶ Backtracking gives the shortest path.
- ▶ Dijkstra like propagation



Compute Geodeiscs

Interval propagation

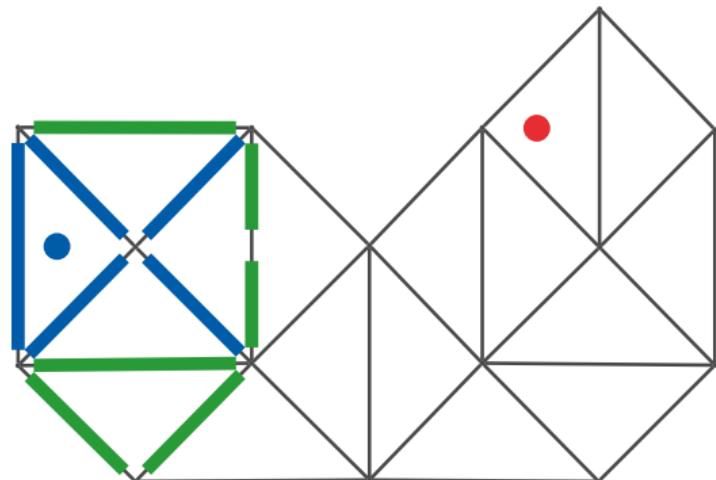
- ▶ Distance propagation from edges to edges.
- ▶ Ordered propagation to reach with minimum distance.
- ▶ Backtracking gives the shortest path.
- ▶ Dijkstra like propagation



Compute Geodeiscs

Interval propagation

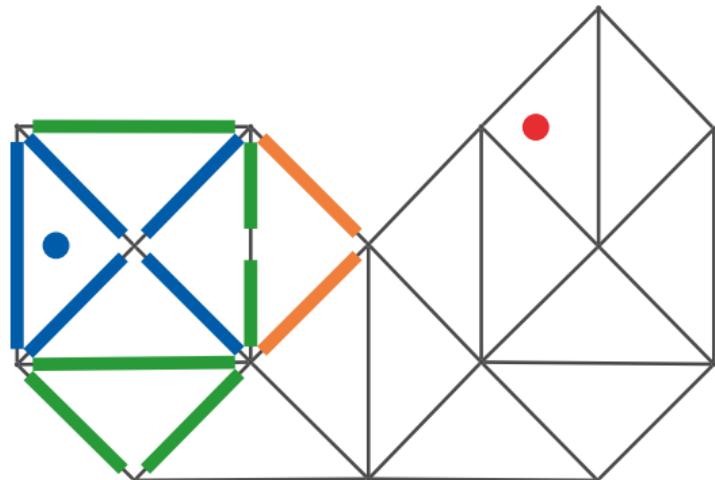
- ▶ Distance propagation from edges to edges.
- ▶ Ordered propagation to reach with minimum distance.
- ▶ Backtracking gives the shortest path.
- ▶ Dijkstra like propagation



Compute Geodeiscs

Interval propagation

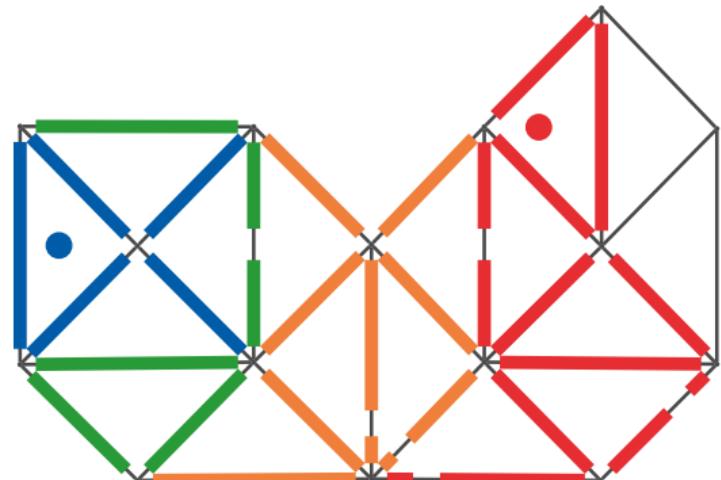
- ▶ Distance propagation from edges to edges.
- ▶ Ordered propagation to reach with minimum distance.
- ▶ Backtracking gives the shortest path.
- ▶ Dijkstra like propagation



Compute Geodeiscs

Interval propagation

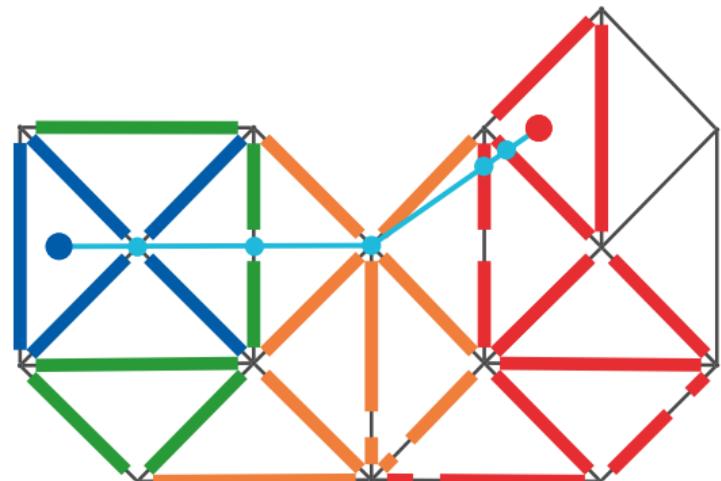
- ▶ Distance propagation from edges to edges.
- ▶ Ordered propagation to reach with minimum distance.
- ▶ Backtracking gives the shortest path.
- ▶ Dijkstra like propagation



Compute Geodeiscs

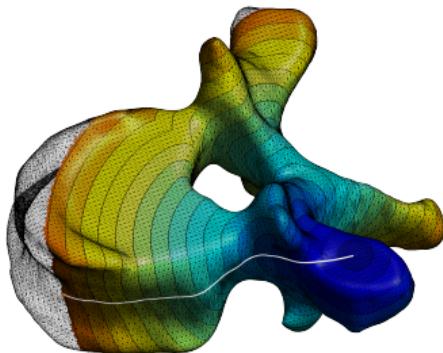
Interval propagation

- ▶ Distance propagation from edges to edges.
- ▶ Ordered propagation to reach with minimum distance.
- ▶ Backtracking gives the shortest path.
- ▶ Dijkstra like propagation



Compute Geodesics

Accelerate the computation



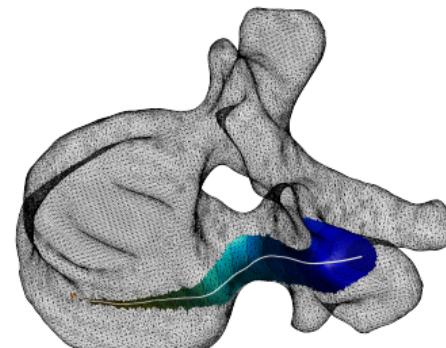
Classic MMP

A* search algorithm: propagate first the element with the lowest expected total distance.

Comparison values:

Classic MMP: $\text{geodesicDistance}(\text{source}, \text{point})$

A* search: $\text{geodesicDistance}(\text{source}, \text{point}) + \text{minDistance}(\text{point}, \text{destination})$



A* search

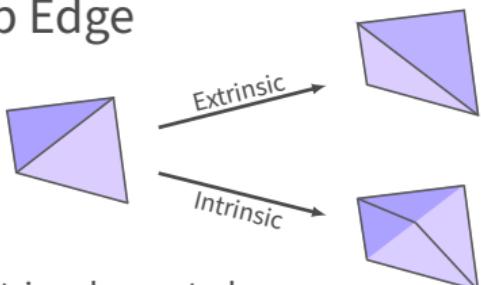
► 30 times faster and 20 times less intervals propagated (on a 160,000 faces geometry).

Note: a similar methods can find the point equidistant from three sources, if it exists.

Challenge 2 - Intrinsic Meshing

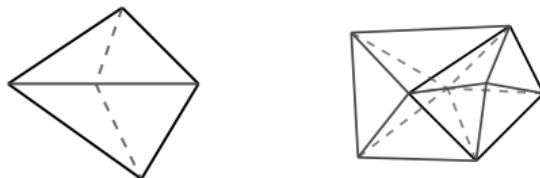
Local Optimizations

Swap Edge



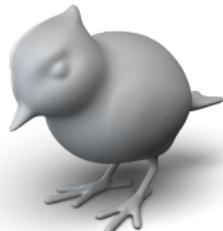
- ▶ No triangle created
- ▶ Criterion: empty circumcircles (Delaunay; optimize angles)
- ▶ No particular order required
- ▶ Common edges must intersect

Split & Collapse Edge

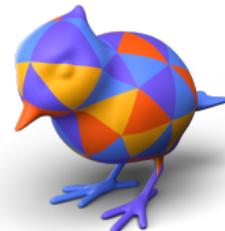


- ▶ Two triangles added/removed
- ▶ Criterion: target edge length
- ▶ Order matters:
 - ▶ Split largest first
 - ▶ Collapse smallest first
- ▶ New edges must be inside the cavity

First Pipeline



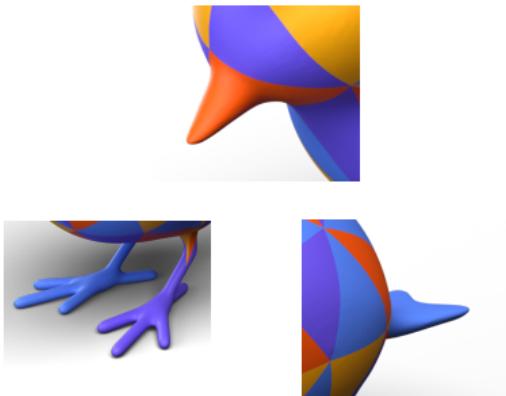
```
Swap edges  
for i = 1 to N do  
    Collapse edges  
    Split edges  
end for
```



- ▶ **Collapse edges:** remove small edges.
- ▶ **Split edges:** remove large edges.
- ▶ **Swap edges:** optimize triangle quality at the beginnig and after every other operation.

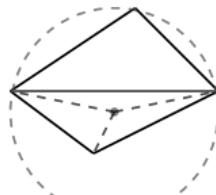
Problematic geodesic triangles

Split Triangle



- ▶ Need "quality" triangles

Impose bounds on intrinsic angles.



- ▶ Two triangles added
- ▶ Criterion: bounds on angles
- ▶ Not strictly local:
 - ▶ Target triangle might not be split
 - ▶ Other triangle might be split
- ▶ No particular order is required.
- ▶ New edges must stay inside the cavity

Final Pipeline

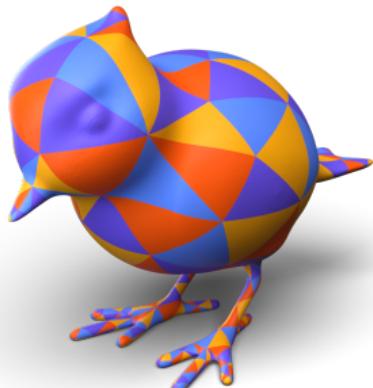
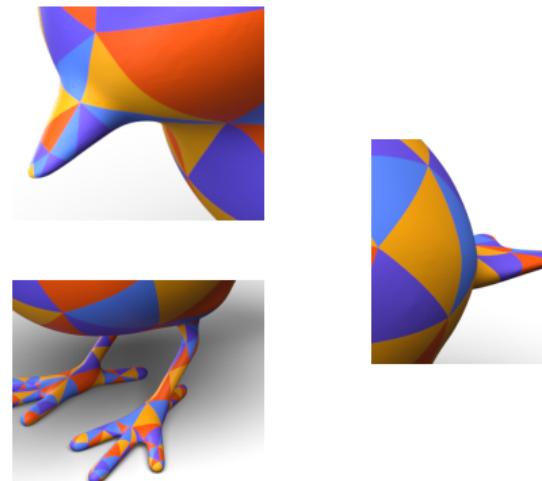

```
Swap edges
for i = 1 to N do
  Collapse edges*
  Split edges
  Split triangles
end for
```



- ▶ **Collapse edges***: remove small edges and while **ensuring angles in the bounds**.
- ▶ **Split edges**: remove large edges.
- ▶ **Split triangle**: split large triangles with angles out of the bounds.
- ▶ **Swap edges**: optimize triangle quality at the beginning and after every other operations.

Final Pipeline

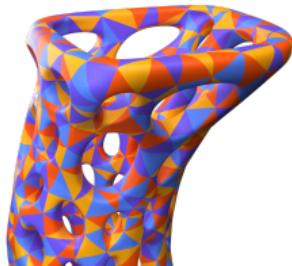
Limit the angles of the triangles. (typically between 20° and 130°)



In order to converge: edges can not be collapsed w.r.t. angles bounds

Benchmarks

#Faces: 46,000
Time: 40 seconds
#Triangles: 670
Min angle: 13.9°
Max angle: 129.7°



#Faces: 754,000
Time: 307 seconds
#Triangles: 3108
Min angle: 19.2°
Max angle: 129.6°

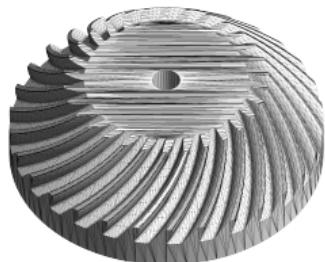
#Faces: 196,000
Time: 55 seconds
#Triangles: 1184
Min angle: 20.4°
Max angle: 129.9°

#Faces: 1,960,000
Time: 635 seconds
#Triangles: 2442
Min angle: 18.2°
Max angle: 135.9°

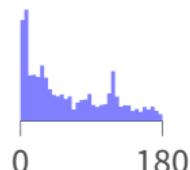
Example

Intrinsic remeshing of a gear

Initial mesh

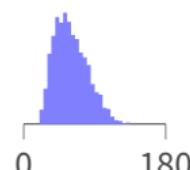


$\#f = 29164$
 $\angle_{\min} = 10^{-3}^\circ$
 $\#f_{area < 10^{-5}} = 349$

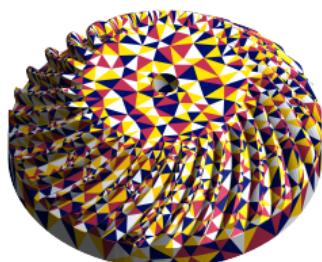


Intrinsic meshing
($\angle > 20^\circ$)

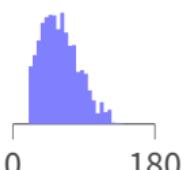
$\#f = 1692$
 $\angle_{\min} = 20.1^\circ$
 $\#f_{area < 10^{-5}} = 0$



Intrinsic meshing
($\angle > 20^\circ, e_r < 1.1$)



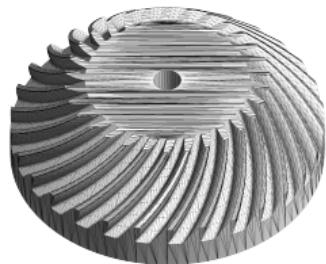
$\#f = 3954$
 $\angle_{\min} = 3.3^\circ$
 $\#f_{area < 10^{-5}} = 0$



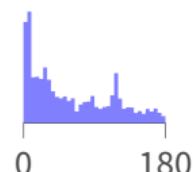
Example

Intrinsic remeshing of a gear

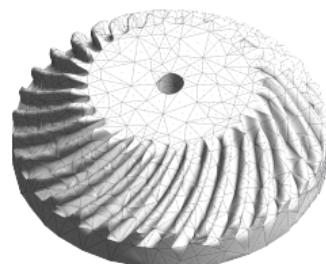
Initial mesh



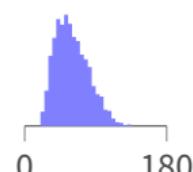
$\#f = 29164$
 $\angle_{\min} = 10^{-3}^\circ$
 $\#f_{area < 10^{-5}} = 349$



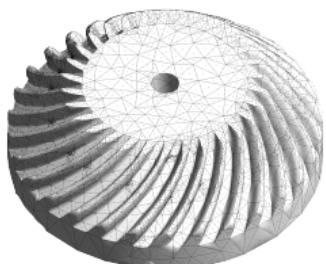
Intrinsic meshing
($\angle > 20^\circ$)



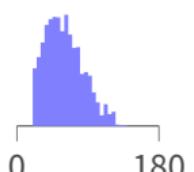
$\#f = 1692$
 $\angle_{\min} = 20.1^\circ$
 $\#f_{area < 10^{-5}} = 0$



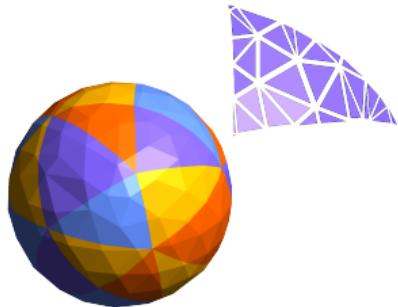
Intrinsic meshing
($\angle > 20^\circ, e_r < 1.1$)



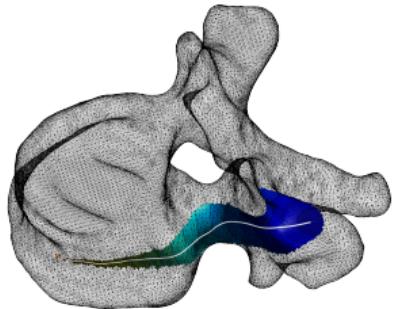
$\#f = 3954$
 $\angle_{\min} = 3.3^\circ$
 $\#f_{area < 10^{-5}} = 0$



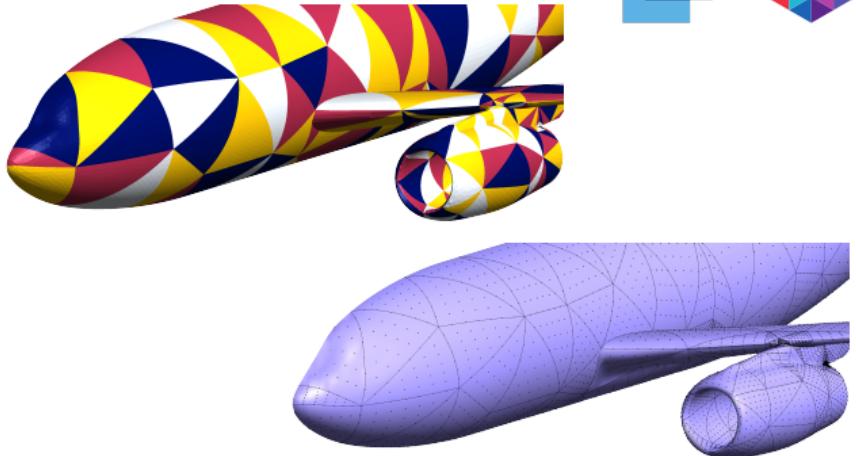
Perspectives



Intrinsic segmentation



A^* search



Intrinsic remeshing and high order fitting

- ▶ Current bottleneck: time to compute geodesics.
- ▶ To explore: fit a way to exploit the raw segmentation.
- ▶ Next: open surfaces and volumes

Contact: tim.gabriel@uliege.be