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Why polytopal elements?

Ï for the very same reasons the Incas were already using them!

Figure: The twelve-angled stone (Cusco, Peru), XIIIth century approximately.
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The skeletal family (1/3)

Conforming-P1 FE (k = 1) Nonconforming-P1 FE (k = 1)

VE(1,2) (k = 2) HHO(0,0) (k = 1)

Figure: Examples of H1 skeletal elements of order k ∈N? (i.e., Pk-exact) in 2D.
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The skeletal family (2/3)

Figure: Assembly procedure for skeletal methods (example of HHO(1,1) (k = 2) in 2D).1

1 illustration borrowed from [Cicuttin, Ern, Pignet; 21]
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The skeletal family (3/3)

Two types of DoFs
Ï those attached to the mesh skeleton: tagged by ∂

Ï those attached to the mesh bulk (if any): tagged by ◦

Common algebraic structure
Skeletal methods yield linear systems of the form

AD UD = FD ,

whith matrices AD such that
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 as a by-product, one may write AD =
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)
with A◦◦

D
= diag

(
(A◦◦K )K∈K
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Factorizable implementation
Ï no reference element: all computations are performed over the physical element

Ï local elimination of ◦ DoFs: AS
K :=A∂∂K −A∂◦K

[
A◦◦K

]−1A◦∂K for all K ∈K

Ï global numbering of ∂ DoFs: exhaustive enumeration of possible ∂ DoF locations

Ï global assembly of the condensed linear system: AS
D

built from the
(
AS

K
)
K∈K
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Skeletal vs. DG

dP1 (k = 1) dP2 (k = 2)

Figure: #DoFs/cell vs. k for (condensed) HHO and IP-DG on a Poisson problem with Dirichlet BCs.
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The (H1) skeletal zoo on polytopes

Lowest-order ancestors
Ï fully conforming methods:

 (nodal) Mimetic Finite Difference (MFD) method [Brezzi, Buffa, Lipnikov; 09]
 Vertex Approximate Gradient (VAG) scheme [Eymard, Guichard, Herbin; 12]
 (vertex-based) Compatible Discrete Operator (CDO) scheme [Bonelle, Ern; 14]

Ï weakly conforming methods:

 Hybrid Finite Volume (HFV) method [Eymard, Gallouët, Herbin; 10]
 (face-based) Compatible Discrete Operator (CDO) scheme [Bonelle, Ern; 14]
 generalized Crouzeix–Raviart method [Di Pietro, Lemaire; 15]

Arbitrary-order successors
Ï fully conforming methods:

 conforming Virtual Element (cVE) method [Beirão da Veiga, Brezzi, Cangiani, Manzini,
Marini, Russo; 13]

 Discrete De Rham (DDR) method [Di Pietro, Droniou, Rapetti; 20]

Ï weakly conforming methods:

 Hybridizable Discontinuous Galerkin (HDG) method [Cockburn, Gopalakrishnan, Lazarov;
09], [Lehrenfeld; 10], [Lehrenfeld, Schöberl; 16], [Oikawa; 15]

 Weak Galerkin (WG) method [Wang, Ye; 13]
 Hybrid High-Order (HHO) method [Di Pietro, Ern, Lemaire; 14]
 nonconforming Virtual Element (ncVE) method [Lipnikov, Manzini; 14], [Ayuso de Dios,

Lipnikov, Manzini; 16]
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The ParaSkel library (1/3)

Main features
Eventually, the ParaSkel library is expected to possess 5 main assets:

Ï a unified 2D/3D implementation;

Ï the native support of any type of DoFs (vertex-, edge-, face-, and cell-based);

Ï a factorized architecture (with common-to-all-methods local elimination and global assembly);

Ï the use of efficient quadrature formulas on polytopes (without the need for subtessellation);

Ï the embedding of parallel computation capabilities.

In practice
Ï programming languages: C++, MPI/OpenMP

Ï Open license: GNU LGPL v3

Ï GitLab repository: https://gitlab.inria.fr/simlemai/paraskel

Ï how to cite: hal-03517921 (SWH deposit)

Development team
Ï Simon Lemaire: instigator and coordinator (since 2019)

Ï Laurence Beaude: lead developer (from 02/2020 to 08/2021)

Ï Thoma Zoto: lead developer (from 12/2022 to 06/2024)

Ï other contributors. . .

https://gitlab.inria.fr/simlemai/paraskel
https://hal.science/hal-03517921
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The ParaSkel library (2/3)

Polytopal quadrature
Ï aim: avoid the subtessellation of the element [Chin, Lasserre, Sukumar; 15]

Ï numerical integration via Stokes formula: for ψ ∈Hp, ψ= div(Ψ) with Ψ(x) = xψ(x)
d+p , thus∫

K
ψ=

∫
∂K
Ψ·n

Hybrid parallelism
Ï local computations (in each K ∈K ) are embarrassingly parallel

Ï supported (CPU) architectures: distributed (MPI) and/or shared (OpenMP) memory

Ï parallel linear solvers: interfacing of PETSc

Polytopal mesher
Ï support of different mesh formats (among which Gmsh)

Ï Voronoï mesher: interfacing of VoroCrust (Sandia National Labs)

Figure: Voronoï tessellation of a torus.

https://petsc.org/
https://vorocrust.sandia.gov/
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The ParaSkel library (3/3)

Quick example: HHO for Stokes

#define DIM 3 // the spatial dimension must be known at compilation time

// Initialize the HHO<DIM, H1d, L2> discrete space
MyDiscreteSpace::DiscreteSpace<DIM> ds(mesh.get());
ds.init<MyDiscreteSpace::HHO, MyDiscreteSpace::H1d, MyDiscreteSpace::L2>(mesh.get(), bulk_k, skeletal_k);

// Add velocity stiffness
ds.add_stiffness_contribution(var_u, mu);
// Add velocity-pressure coupling
ds.add_divergence_coupling(var_u, var_p, -1.);
// Add a Lagrange multiplier for the pressure
ds.add_lagrange_multiplier(var_p);

// Set Dirichlet (essential) BC for the velocity
ds.set_BCtype(mesh.get(), var_u, MyDiscreteSpace::ESSENTIAL);

// Add loading to rhs
ds.add_loading_to_rhs(continuous_rhs, specific_quadra_order, var_u);

// Initialize matrix pattern and assemble local contributions into global system
MySolver::MatrixPattern<DIM> mp(mesh.get(), &ds, static_condensation, essentialBC_elimination);
mp.assemble_local_contributions(mesh.get(), &ds);



ANY QUESTIONS?


