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m Let Q c R4, d > 2, be an open connected polytopal domain
m We focus on the Poisson problem: Find u € Hé (Q) s.t.

a(u,v) = / Vu - Vv = / fv Vve Hé(Q)
Q Q
m The well-posedness of this problem hinges on the Poincaré inequality

Vliz2(@) < IVVliL2(@)a Vv € Ho(Q)




The Crouzeix—Raviart (CR) element

m Let P1(T) be the space of affine functions on T
m Define the degrees of freedom o = (0F)Fes s.t.

1
UF:Pl(T)BVHvF:=—/v€R
IFl JF

m The triplet (T,P(T), o) is a FE in the sense of [Ciarlet, 2002]




A non-conforming FE scheme

m Let 75, be a conforming simplicial mesh
m Let Vj, o be the global CR space on 7j with zero boundary DOFs
m We consider the scheme: Find uj € Vj ¢ s.t.

/thh Vv = / fvn Yvp €V
Q o

m Well-posedness follows from the discrete Poincaré inequality:

IvallLz@) S IVavallz@)a Vv € Vio

m Assuming for the exact solution u € Hé (Q) N H%(Ty), one can prove that

IVi(u—up)llz (@2 < hlulgz(7)
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Limitations

m Construction valid only on standard meshes
m Devising higher-order versions is not trivial
m Can we remove these limitations?
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General meshes

Figure: Examples of applications of general meshes, for which a finite family of
reference elements cannot be identified
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Shifting point of view |

m Let v € PY(T) and set, for all F € F7,

),
VEp = — Y
|F| JF

m Vv is fully determined in terms of the values (vr)res; by the equation

‘/TVva 2P Z '/Fv(Vw~nTF)= Z /VF(Vw-nTF) vYw e PL(T)

Fevr ——— Fer ’F
ePO(F)

m To express the average value of v in terms of (vr)pes;, We can write

/v— /vdlv(x—xT) IB—Pl Z /v(x—)_cT)-nsz Z dfTF/FvF

Fe 7 F FeFr
=drr€eR




Shifting point of view Il

m In conclusion, v is the unique solution of

/TVv-sz Z [:VF(Vw-nTF) vw e PYT),

Fefr

dTF/
v= E L Y
‘/T Z d Jr F

Fefr

m This remains true if T is a (reasonable) polytope with planar faces!




A lowest-order hybrid space

m Denote by M, = (75, F1) a polytopal mesh of Q
m We define the following space, spanned by vectors of local polynomials:

Z(I’)l = {Kh = (VF)Feg, : VF € PO(F) for all F € 7—',,}
m Smooth functions are interpolated through [2 HY(Q) — Zg s.t.

Lgv = (V) pes, Vv e HY(Q)

with 7%y = ﬁ [ v L2-orthogonal projection of v|r on P°(F)




An affine potential reconstruction

m Let 7 € 7, and denote by V9. the restriction of V9 to T

m Inspired by the previous remark, we let p. :Zg’w — PY(T) be s.t., for all
Yr € KOT:

[9phyvw= 30 [orwenmn  vwerm,
T Fe¥r F

d
T SV
‘/TpT‘_}T_ Z d LVF

Fefr

m With 7. restriction of I) to T, it holds, by construction,

plT(loTv) =v VYvePYD)




Extension to arbitrary order |

m We need to recover arbitrary-order polynomials in P**1(T), k > 0
= Given Y € [, UF, and £>0, let 7l : L2(Y) — PI(Y) bess.t.

‘/nf,vw=‘/vw vw € PL(Y)
Y Y

m We notice that, for all v € PX+1(T),

/VV'VWZ—/H;{_IV Aw  + Z /ﬁFV (Vw-nrp)  Yw e PHYT)
T T —

— Fefr
ePk-1(T) ePk(F)

/v:/ni‘lviszl
T T

m Moreover,




Extension to arbitrary order Il

m Hence, v € P**1(T) is the unique solution of

/Vv-Vw:—/ﬂé_lvAw+ Z /ﬂf;v(Vw-nTp) Yw e PKL(T),
T T F

Fe¥r

/ {ZFE,:T dor [ 70y if k=0,

fT 7TT v if k>1
. . . . O .
m This suggests to consider the following extension of V;:

Vi ={v, = (vD)rem. WF)res,)) vy € PXUT) for all T € 7y,
vp € PE(F) for all F e 73}

= The natural interpolator I§ : H'(Q) — V¥ is s.t., for all v € HY(Q),

k. . k-1 k
Lyv = ((my Ve, (MpV)Fes,)




An arbitrary-order potential reconstruction

m Denote by K’; the restriction of th toT

m We introduce pkt!l : VA — PKI(T) st for all v, € V&,

/Vp’}”KT -Vw = —/vTAw + Z / vi (Vw -nrp) VYw e Pk”(T),
T T F

Fefr
/ 1. JXFerr —"QF ﬁva ifk=0,
Pr Yr= .
T /TVT ifk>1

m This problem has to be solved numerically inside each 7 € 7!

m By similar arguments as before, we have polynomial consistency:

p’}”(f}v) =v VvePHNT)
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Elliptic projector

m The projector wk*! := pk*l o Ik is characterized by: For all v € HY(T),

/Vw#“v Vw = /VV-VW Yw e PK(T),
T

[opn {z fe [ k=,

V ifk>1

m This shows that it is an elliptic projector

™ w;i” has optimal approximation properties, in particular:

k+l
IV = @5 W)l 2 aya S by 2 gz Vv € HF(T)
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A discrete Poincaré inequality in hybrid spaces |

m Forall y, € VF, let vj, € L2(Q) (not underlined) be s.t.
v =vr VT €7,
m Define the subspace of Zﬁ with homogeneous boundary conditions

Zf,,o:{zhez’,i cvp=0forall FeFst FcoQ}

m The equivalent of | - |51 (q) on this space is || - [, s.t., forall v, € tho,
2 . 2
v, l3 = > gl
TeT,

2 . 2 -1 2
g3 7 = Ivrlla gy + it D ve = vrliZagp,
Fe¥r

— 2
—-|2T|1,6T




A discrete Poincaré inequality in hybrid spaces ||

Lemma (Discrete Poincaré inequality in hybrid spaces)

For all v, €V}, it holds

Ivallzz@) < vy llea.




A discrete Poincaré inequality in hybrid spaces Il

m By surjectivity of div : H'(Q)? — L?(Q), there is T € H (Q)¢ s.t.
divr = vy and |7l g1 (@) S [VallLz @)

m We thus have

Ivall?2q) =/vhd1v7— Z /deIVT

TeT,
2P Z —‘/T:VVT'T+ Z ‘/FVT(T-nTF)l

Te7, Ferr
= Z _/VVT‘T+ /(VT—VF)(T nTF)l
TeT;, T Fefr




A discrete Poincaré inequality in hybrid spaces IV

m Applying Cauchy—Schwarz to integrals and sums, we go on writing

1
2
alFaq < | D) (nwru;md +hpt D v - vT||iQ(F))l
TeT, Fefr
3
x| D (Il e +hT||r||iQ(aT))l
TeT
m Recalling the definition of || - ||1,, and using trace inequalities, we get

2
villz2@) s vl ITlla @a < vplln vallz @

m Simplifying, the result follows




A coercive bilinear form

= We let ap : Vi xVk > Rbes.t.

an(uy,v,) = Z ar(ur, vr),
TeT,

. k+1
ar(uy.vy) = / Vo5 ug - Vpity, + sr(up.vy)
T

m We assume that, for all T € 7y, st is s.t., for all v, € V&,

ar(Vp.vy) = ||VP11€“+IKT”22(T)d +57(vy, V) = ”KT”%,T (ST1)

m Summing over T € T}, we infer coercivity for ay:

2 k
”Khlll,h S an(vy,,v,) Yy, € Zh,o




Discrete problem and basic error estimate |

m We consider the following scheme: Find u, € K’; oSt

ap(u,,v,) = / Svn Vv, € KZ,O
Q

m Unlike FEM, we cannot plug u into a; to prove convergence!

m We instead study the discrete error defined as

gk
ey = u, —Lyu




Discrete problem and basic error estimate I

m ¢, is solution to the following equation:
an(e,vy) = / fn = an(Tyu,vy) = En(v,) Vv, €V,
Q

where &, : Zﬁ o — R is the consistency error linear form

m Denoting by || - ||1,,« the norm dual to || - ||1,n, we thus have
lenll? n < anleysep) < l1Enllvnslle,lln,
leading to the error estimate
lleyllin < 1Enll,n,




Consistency error estimate |

m A complete characterization of st comes from the study of ||Ep||1.n.-

m We assume in what follows that the exact solution satisfies
u € Hy(Q) N H*2(T;)
m To estimate ||Enll1,n,+, we recast &y to highlight the differences
(u - w1 wreg;,

which, by the approximation properties of w%*l, satisfy, for all T € 7},

k+1 k+1
IV(u— @5 w)ll2o7ya S By ? lul g g
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Consistency error estimate |l

m For the first contribution in E(v,,), we write

‘/s;f\’h=—/QAthlB=P Z (/TVu~VvT+

TeT;,

Z /Vu'”TF(VF—VT))

Fe¥Fr F

= For the second, by definition of pk*ly.. with w = wk*!

ah(lﬁ”’lh) = Z (‘/va?l”'va"' Z /Vw?.lu'nTF(VF_VT))

TeT, Ferp Y F

+ Y sr(lfu,vy)

TeT,

u, we have




Consistency error estimate ||

®m By the characterization of @wk*!, since vy € P*~1(T) c PHI(T),

/V(u — @k ) - Vvr = 0
T

m Hence, gathering the previous results, we obtain

En(u;v,) = Z Z ‘/V(u—w?lu) ‘nrr(VE = vr) = Z st(Lyu,vy)

TeT, Ferr U F TeT,

Zl Z2

m For the first term, we have, using Cauchy—-Schwarz inequalities,

RIS

2
k+1 2 k+1
> bV - wft u>||L2(a,)) gl < 7 utl g oy g 1
TeT,
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Consistency error estimate 1V

m We would like the second term to scale in h**1 as well

m This is the case if sy is polynomially consistent:

st(lsw,v;) =0 V(w,v,) € PEYT) x VE (ST2)

m Can we find sy satisfying (ST1) and (S5T2)?




Local stabilization |

Proposition (Structure of the stabilization bilinear form)

Let 6k : vk — vk be s.t., for all v, € VX,
vy = Lipr vp — vy
(ST1)-(ST2) hold iff there is a symmetric bilinear form Sy : VA xVk — R s.t.
— k k k k
ST(KT’KT) = ST(QTXT’ éTﬂT) V(KT’ ET) € ZT X ZT

and
2 2 k
|KT|1,6T < ST(ZT,KT) < ”XT”LT VKT ev;.
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Local stabilization Il

Example (Original HHO stabilization)

The original HHO stabilization of [DP, Ern, Lemaire, 2014] is obtained setting

Sr(wg.vy) = hy! Z L(WF —wr)(vE —vr).

Fe¥r

Example (VEM-type stabilization)

A stabilization inspired by Virtual Elements [Beirdo da Veiga et al., 2013] is
obtained with

Sr(Wr.vy) = h;Q/wTvT+h;1 Z /WFVF,
T

Fefr a4

AN UNIVERSITE
M MONTPELLIER

27/31



A variation based on a gradient reconstruction

m Alternatively, one can reconstruct the gradient instead of the potential
= Specifically, let GX : V& — PK(T)9 be s.t., for all v, € VX,

/GégT“r:—/deiv~r+ Z /vF(T-nTp) VTEPk(T)d
T T F

Fefr

m Given sy satisfying (ST1)-(ST2), a different method is obtained setting

aT(ZT»‘_’T) = /T'G];ZT ’ G]%KT + ST(ZT’KT)

m This variation is better suited to treat locally variable diffusion
m For further details, see, e.g., [Di Pietro and Droniou, 2020, Section 4.2]




m (Much) more complicated spaces/reconstructions exist
m Need for a polytopal-oriented DS(E)L!

Space ‘ Vertices V. Edges E Element T
Xorad F R PEI(E) PET)
Xl p PHE)  RFUT) x ROK(T)
PK(T) PK(T)

Table: Examples of spaces appearing in the two-dimensional Discrete de Rham
method of [Di Pietro and Droniou, 2023]. Above, R*~1(T) := rot P*(T) and
REK(T) = (x — xp)P*1(T).
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