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Reissner–Mindlin plate problem

[Di Pietro and Droniou, 2022]

Stabilised P2-(P1 + B3) scheme DDR scheme

nb. DOFs Error nb. DOFs Error
2403 0.138 550 0.161
9603 6.82e-2 2121 6.77e-2
38402 3.40e-2 8329 3.1e-2
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Electromagnetic wave I

[Touzalin, 2025]

Problem: use a boundary element method to analyse the shielding
effectiveness of a perfectly conductive box with a very small slit.
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Electromagnetic wave II

Meshes: conforming triangular for finite-element boundary method (bem),
non-conforming triangular (polygonal) for virtual element boundary method
(vbem-3z).

bem vbem-1z vbem-1zQ

vbem-1zV vbem-3z vbem-4z

bem vbem-1z vbem-1zQ

vbem-1zV vbem-3z vbem-4z
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Electromagnetic wave III

Accuracy: comparison of modulus of reflected near fields at the top.
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Computational cost

Method Assembly Resolution
bem 813s 125s

vbem-3z 321s 19s
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Algebraic realisation of potential

■ Space: 𝑉 𝑘
𝑇
= {𝑣

𝑇
= (𝑣𝑇 , (𝑣𝐹)𝐹∈F𝑇 ) : 𝑣𝑇 ∈ P𝑘−1 (𝑇) , 𝑣𝐹 ∈ P𝑘 (𝐹)}.

■ Potential reconstruction (𝑘 ≥ 1):∫
𝑇

∇𝑝𝑘+1𝑇 𝑣
𝑇
· ∇𝑤 = −

∫
𝑇

𝑣𝑇Δ𝑤 +
∑︁
𝐹∈F𝑇

∫
𝐹

𝑣𝐹 (∇𝑤 · 𝒏𝑇𝐹) ∀𝑤 ∈ P𝑘+1(𝑇),∫
𝑇

𝑝𝑘+1𝑇 𝑣
𝑇
=

∫
𝑇

𝑣𝑇 .

■ Recast as: for all 𝑤 ∈ P𝑘+1 (𝑇),

(∇𝑝𝑘+1𝑇 𝑣
𝑇
,∇𝑤)𝑇 + (𝑝𝑘+1𝑇 𝑣

𝑇
, 1)𝑇 (𝑤, 1)𝑇

= −(𝑣𝑇 ,Δ𝑤)𝑇 +
∑︁
𝐹∈F𝑇

(𝑣𝐹 ,∇𝑤 · 𝒏𝑇𝐹)𝐹 + (𝑣𝑇 , 1)𝑇 (𝑤, 1)𝑇 .

(Solution of a Riesz representation problem)
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Matrix of 𝑝𝑘+1
𝑇

: 𝑉 𝑘
𝑇
→ P𝑘+1(𝑇) on selected bases

■ Pick bases Φ𝑘
𝐹
of P𝑘 (𝐹) for 𝐹 ∈ F𝑇 and Φ𝑘−1

𝑇
of P𝑘−1 (𝑇).

Basis of 𝑉 𝑘
𝑇
: Φ𝑘

𝐹1
× · · · ×Φ𝑘

𝐹𝑁𝜕𝑇
×Φ𝑘−1

𝑇 .

(Increasing dimension of mesh entities)

■ Pick basis Φ̂𝑘+1
𝑇

of P𝑘+1 (𝑇).

■ Notations:
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(Increasing dimension of mesh entities)

■ Pick basis Φ̂𝑘+1
𝑇

of P𝑘+1 (𝑇).

■ Notations:

Φ𝑘
𝐹 ={𝜑𝐹

1 , . . . , 𝜑
𝐹
𝑁𝑘,𝐹

},

Φ𝑘−1
𝑇 ={𝜑𝑇

1 , . . . , 𝜑
𝑇
𝑁𝑘,𝑇

},

Φ̂𝑘+1
𝑇 ={𝜑𝑇

1 , . . . , 𝜑
𝑇
𝑁𝑘+1,𝑇

}.
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(Increasing dimension of mesh entities)

■ Pick basis Φ̂𝑘+1
𝑇

of P𝑘+1 (𝑇).

■ Notations: vector V𝑇 of 𝑣
𝑇
∈ 𝑉 𝑘

𝑇
written as:

V𝑇 =


V𝐹1

...

V𝐹𝑁𝜕𝑇

V𝑇


with

V𝐹 = [𝑉𝐹
𝑖 ]𝑖=1,...,𝑁𝑘,𝐹

coefficients on Φ𝑘
𝐹 ,

V𝑇 = [𝑉𝑇
𝑖 ]𝑖=1,...,𝑁𝑘−1,𝑇 coefficients on Φ𝑘−1

𝑇 .
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Matrix of 𝑝𝑘+1
𝑇

: 𝑉 𝑘
𝑇
→ P𝑘+1(𝑇) on selected bases

■ Definition:

(∇𝑝𝑘+1𝑇 𝑣
𝑇
,∇𝑤)𝑇 + (𝑝𝑘+1𝑇 𝑣

𝑇
, 1)𝑇 (𝑤, 1)𝑇

= −(𝑣𝑇 ,Δ𝑤)𝑇 + (𝑣𝑇 , 1)𝑇 (𝑤, 1)𝑇 +
∑︁
𝐹∈F𝑇

(𝑣𝐹 ,∇𝑤 · 𝒏𝑇𝐹)𝐹 .

■ Algebraic translation: the coefficients P𝑇 of 𝑝𝑘+1
𝑇

𝑣
𝑇
on Φ̂𝑘+1

𝑇
satisfy(

S𝑇 + L̂𝑘+1𝑇 (L̂𝑘+1𝑇 )⊺
)
P𝑇 =

(
B𝑃,𝑇 + L̂𝑘+1𝑇 (L𝑘−1𝑇 )⊺

)
V𝑇 +

∑︁
𝐹∈F𝑇

B𝑃,𝐹V𝐹 ,

with

S𝑇 ≔
[
(∇𝜑𝑇

𝑖
,∇𝜑𝑇

𝑗
)𝑇
]
1≤𝑖, 𝑗≤𝑁𝑘+1,𝑇

, L̂𝑘+1𝑇 ≔ [(𝜑𝑇
𝑖 , 1)𝑇 ]1≤𝑖≤𝑁𝑘+1,𝑇 ,

B𝑃,𝑇 ≔
[
−(Δ𝜑𝑇

𝑖
, 𝜑𝑇

𝑗
)𝑇
]
1≤𝑖≤𝑁𝑘+1,𝑇 ,1≤ 𝑗≤𝑁𝑘−1,𝑇

, L𝑘−1𝑇 ≔ [(𝜑𝑇
𝑖 , 1)𝑇 ]1≤𝑖≤𝑁𝑘−1,𝑇

B𝑃,𝐹 ≔
[
(∇𝜑𝑇

𝑖
· 𝒏𝑇𝐹 , 𝜑𝐹

𝑗
)𝐹
]
1≤𝑖≤𝑁𝑘+1,𝑇 ,1≤ 𝑗≤𝑁𝑘,𝐹

.
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𝑇

: 𝑉 𝑘
𝑇
→ P𝑘+1(𝑇) on selected bases

■ The coefficients P𝑇 of 𝑝𝑘+1
𝑇

𝑣
𝑇
on Φ̂𝑘+1

𝑇
satisfy(

S𝑇 + L̂𝑘+1
𝑇 (L̂𝑘+1

𝑇 )⊺
)
P𝑇 =

(
B𝑃,𝑇 + L̂𝑘+1

𝑇 (L𝑘−1
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[
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𝑗
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]
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𝑇 ≔ [(𝜑𝑇𝑖 , 1)𝑇 ]1≤𝑖≤𝑁𝑘+1,𝑇 ,

B𝑃,𝑇 ≔
[
−(Δ𝜑𝑇

𝑖
, 𝜑𝑇

𝑗
)𝑇
]
1≤𝑖≤𝑁𝑘+1,𝑇 ,1≤ 𝑗≤𝑁𝑘−1,𝑇

, L𝑘−1
𝑇 ≔ [(𝜑𝑇𝑖 , 1)𝑇 ]1≤𝑖≤𝑁𝑘−1,𝑇

B𝑃,𝐹 ≔
[
(∇𝜑𝑇

𝑖
· 𝒏𝑇𝐹 , 𝜑𝐹

𝑗
)𝐹

]
1≤𝑖≤𝑁𝑘+1,𝑇 ,1≤ 𝑗≤𝑁𝑘,𝐹

.

■ The matrix P𝑇 of 𝑝𝑘+1
𝑇

is thus obtained by solving(
S𝑇 + L̂𝑘+1𝑇 (L̂𝑘+1𝑇 )⊺

)
P𝑇 =

[
B𝑃,𝐹1

· · · B𝑃,𝐹𝑁𝜕𝑇
B𝑃,𝑇 + L̂𝑘+1

𝑇
(L𝑘−1

𝑇
)⊺
]
.

■ A few requirements for the library:

◦ Gram matrices of families of polynomials (integrate products).
◦ Differential operators between families of polynomials.
◦ Direct access to faces of an elements, and integrate on them.
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HArDCore library (https://github.com/jdroniou/HArDCore)

■ Linear algebra: via Eigen (https://gitlab.com/libeigen/eigen).

■ In-house Mesh classes and Polynomial family classes.

■ Fast integration rules [Chin et al., 2015]: essential for polytopal methods,
requires full connectivity from element to vertices, as well as geometric
information (outer normal, etc.).

(In some instances, quadrature-based integration is still required.)

■ Various interfaces:

★ PaSTiX (https://solverstack.gitlabpages.inria.fr/pastix/),
★ PETSc (https://petsc.org/release/),
★ etc.

■ Many polytopal methods and schemes : HHO, DDR, VEM, elasticity with
Tresca contact, plates, Yang–Mills, etc.
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Construction of polynomial bases

■ Store vectors of powers up to degree ℓ

{𝜶 = (𝜔1, . . . , 𝜔𝑑) ∈ N𝑑 :
∑︁
𝑖

𝜔𝑖 = ℓ} = {𝜶1,𝜶2, . . . ,𝜶𝑁ℓ
},

which define the monomials (𝒙𝑇 = center of mass of 𝑇 , ℎ𝑇 = diameter)

𝑚 𝑗 (𝒙) =
(
𝑥1 − 𝑥𝑇,1

ℎ𝑇

)𝛼𝑗,1

· · ·
(
𝑥1 − 𝑥𝑇,𝑑

ℎ𝑇

)𝛼𝑗,𝑑

.

■ Basis Φℓ
𝑇
= {𝜙1, . . . , 𝜙𝑁ℓ

} of Pℓ (𝑇): linear combination of monomials

𝜙𝑟 =

𝑁ℓ∑︁
𝑗=1

𝑀𝑟 𝑗𝑚 𝑗 .

■ Extensions: vector- or matrix-valued polynomials by tensorisation.

■ PolynomialFamily: defined by degree ℓ, mesh entity (𝑇 , 𝐹, etc.),
generators (list of scalars, vectors, matrices) and matrix 𝑀.
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Construction of polynomial bases

Local polynomial bases on P𝑘 (𝑇), P𝑘 (𝐹) are orthonormalised!

Monomial basis functions Orthonormal basis functions

10−1.2 10−1 10−0.8 10−0.6

10−7

10−6

10−5

10−4

1

4

(a) Energy norm vs. ℎ, Kershaw meshes,
𝑘 = 3.

10−1.2 10−1 10−0.8 10−0.6

10−9

10−8

10−7

10−6

1

5

(b) 𝐿2-norm vs. ℎ, Kershaw meshes,
𝑘 = 3.
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Unified class for all kinds of polynomial spaces

■ PolynomialFamily: defined by degree ℓ, mesh entity (𝑇 , 𝐹, etc.),
generators (list of scalars, vectors, matrices) and matrix 𝑀.

■ Suitable choices of generators and matrix describe PolynomialFamilies
that are not Pℓ (𝑋).
For example, for PF polynomial family:

★ gradient(PF), divergence(PF), curl(PF), etc.
★ 𝐿 (PF) if 𝐿 linear map acting on generators.

★ PF1 + PF2 (sum of spanned vector spaces).

■ Koszul complements are also described as PolynomialFamilies, e.g.:

R
𝑐,ℓ (𝑇) = (𝒙 − 𝒙𝑇 )Pℓ−1 (𝑇) , G

𝑐,ℓ (𝑇) = (𝒙 − 𝒙𝑇 ) × Pℓ−1 (𝑇)3.

(leads to straightforward description of arbitrary-order Nédélec and
Raviart–Thomas elements)

■ Unified class of polynomials means unified (fast) integration rules.
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Classes for mesh entities

■ Classes for Cell, Face, Edge, Vertex.

All templated versions of the same MeshObject class.

■ Full connectivity, for example each Face embeds (pointers to) its
neighbouring Cells, and the Edges, Vertex it contains.

Useful for local constructions of operators, and fast integration rule.

■ Lots of additional embedded information (where relevant): global index;
diameter, volume/area/length; center of mass; outer normal, tangent
vector; relative orientations of sub-mesh entities; etc.

𝒏𝐹

𝐹

𝑇𝒏𝐸

𝐸

■ Other features:
★ Each cell/face has a simplicial subdivision.

★ 2-level meshes can be handled (coarsened mesh from fine mesh).

★ Mesh transformation/handlers: move vertices; split non-planar faces; etc.
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Mesh construction

■ Full mesh described in (large) “RF” mesh files with minimal
(non-redundant) information.

■ MeshBuilder takes care of creating all the connectivity.

Since last October, the development version of HArDCore also has an
interface with GMesh (https: // gmsh. info/ ).

19 / 24
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RF mesh file data structure

■ Two files for each 3D mesh: M.node for vertices, M.ele for cells.

■ In M.node, one line per vertex:
<vertex id> <x coordinate> <y coordinate> <z coordinate>

■ In M.ele, each cell is given by:
★ Header line: <cell id> <number of faces>

★ For each face in the cell:
<local face id> <number of vertices> <id of first vertex> <id of second
vertex> . . .

(vertices listed in order around the face boundary)
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Mesh builder

■ From RF file or GMesh mesh, creates std::vector to list vertices and
cells (as in RF file format).

■ To create a mesh entity in Mesh, it is split into simplices:

★ ensures that orientation will be correct,

★ allows for calculation of center of mass, measure, etc.

(Assumes that faces and cells are star-shaped w.r.t. average of their
vertices).

■ Entities (partially) created and added by increasing dimension:

★ Vertices (no connectivity at this stage).

★ Edges (connected to vertices and gives connexion between vertices).

★ etc.
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Conclusion and transition

■ Building polytopal schemes requires:

★ Selecting degrees of freedom (polynomials on vertices, edges, faces,
elements).

★ Implementing reconstruction operators as the solutions to local problems
(Riez representation problems).

No need for explicit shape functions.

■ Same approach can be applied to (complex) finite elements, without
having to know their shape functions (typically challenging in some FE for
elasticity).

■ Coding polytopal methods is facilitated by a rich mesh structure, well-suite
polynomial bases and efficient libraries for polynomial integration.
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Thank you for your attention!
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