
Implementation aspects of polytoptal methods and
handling of polytopal meshes in HArDCore

Jérôme Droniou

Towards polytopal meshes in GMSH

Montpellier, 26–27 January 2026

1 / 24



Outline

1 Polytopal methods: examples of practical efficiency

2 Implementing HHO

3 Bases for polynomial spaces on cells, faces, edges

4 Mesh class and file data structure

2 / 24



Reissner–Mindlin plate problem

[Di Pietro and Droniou, 2022]

Stabilised P2-(P1 + B3) scheme DDR scheme

nb. DOFs Error nb. DOFs Error
2403 0.138 550 0.161
9603 6.82e-2 2121 6.77e-2
38402 3.40e-2 8329 3.1e-2

3 / 24



Electromagnetic wave I

[Touzalin, 2025]

Problem: use a boundary element method to analyse the shielding
effectiveness of a perfectly conductive box with a very small slit.

τ1

τ2

τ3

2000mm

5000mm

2000mm
424mm

3000mm

4 / 24



Electromagnetic wave II

Meshes: conforming triangular for finite-element boundary method (bem),
non-conforming triangular (polygonal) for virtual element boundary method
(vbem-3z).

bem vbem-1z vbem-1zQ

vbem-1zV vbem-3z vbem-4z

bem vbem-1z vbem-1zQ

vbem-1zV vbem-3z vbem-4z

5 / 24



Electromagnetic wave III

Accuracy: comparison of modulus of reflected near fields at the top.

10 20 30 40 50 60 70 80 90 100

−40

−20

0

20

Fréquence (en MHz)

C
h
am

p
p
ro
ch
e
E

bem vbem-1z

vbem-1zQ vbem-3z

vbem-4z

10 20 30 40 50 60 70 80 90 100

−40

−20

0

20

Fréquence (en MHz)

C
h
am

p
p
ro
ch
e
E

bem vbem-1z

vbem-1zQ vbem-3z

vbem-4z

10 20 30 40 50 60 70 80 90 100

−90

−80

−70

−60

−50

Fréquence (en MHz)

C
h
am

p
p
ro
ch
e
H

bem vbem-1z

vbem-1zQ vbem-3z

vbem-4z

10 20 30 40 50 60 70 80 90 100

−90

−80

−70

−60

−50

Fréquence (en MHz)

C
h
am

p
p
ro
ch
e
H

bem vbem-1z

vbem-1zQ vbem-3z

vbem-4z

Computational cost

Method Assembly Resolution
bem 813s 125s

vbem-3z 321s 19s

6 / 24



Outline

1 Polytopal methods: examples of practical efficiency

2 Implementing HHO

3 Bases for polynomial spaces on cells, faces, edges

4 Mesh class and file data structure

7 / 24



Algebraic realisation of potential

■ Space: 𝑉 𝑘
𝑇
= {𝑣

𝑇
= (𝑣𝑇 , (𝑣𝐹)𝐹∈F𝑇 ) : 𝑣𝑇 ∈ P𝑘−1 (𝑇) , 𝑣𝐹 ∈ P𝑘 (𝐹)}.

■ Potential reconstruction (𝑘 ≥ 1):∫
𝑇

∇𝑝𝑘+1𝑇 𝑣
𝑇
· ∇𝑤 = −

∫
𝑇

𝑣𝑇Δ𝑤 +
∑︁
𝐹∈F𝑇

∫
𝐹

𝑣𝐹 (∇𝑤 · 𝒏𝑇𝐹) ∀𝑤 ∈ P𝑘+1(𝑇),∫
𝑇

𝑝𝑘+1𝑇 𝑣
𝑇
=

∫
𝑇

𝑣𝑇 .

■ Recast as: for all 𝑤 ∈ P𝑘+1 (𝑇),

(∇𝑝𝑘+1𝑇 𝑣
𝑇
,∇𝑤)𝑇 + (𝑝𝑘+1𝑇 𝑣

𝑇
, 1)𝑇 (𝑤, 1)𝑇

= −(𝑣𝑇 ,Δ𝑤)𝑇 +
∑︁
𝐹∈F𝑇

(𝑣𝐹 ,∇𝑤 · 𝒏𝑇𝐹)𝐹 + (𝑣𝑇 , 1)𝑇 (𝑤, 1)𝑇 .

(Solution of a Riesz representation problem)

8 / 24



Matrix of 𝑝𝑘+1
𝑇

: 𝑉 𝑘
𝑇
→ P𝑘+1(𝑇) on selected bases

■ Pick bases Φ𝑘
𝐹
of P𝑘 (𝐹) for 𝐹 ∈ F𝑇 and Φ𝑘−1

𝑇
of P𝑘−1 (𝑇).

Basis of 𝑉 𝑘
𝑇
: Φ𝑘

𝐹1
× · · · ×Φ𝑘

𝐹𝑁𝜕𝑇
×Φ𝑘−1

𝑇 .

(Increasing dimension of mesh entities)

■ Pick basis Φ̂𝑘+1
𝑇

of P𝑘+1 (𝑇).

■ Notations:

9 / 24



Matrix of 𝑝𝑘+1
𝑇

: 𝑉 𝑘
𝑇
→ P𝑘+1(𝑇) on selected bases

■ Pick bases Φ𝑘
𝐹
of P𝑘 (𝐹) for 𝐹 ∈ F𝑇 and Φ𝑘−1

𝑇
of P𝑘−1 (𝑇).

Basis of 𝑉 𝑘
𝑇
: Φ𝑘

𝐹1
× · · · ×Φ𝑘

𝐹𝑁𝜕𝑇
×Φ𝑘−1

𝑇 .

(Increasing dimension of mesh entities)

■ Pick basis Φ̂𝑘+1
𝑇

of P𝑘+1 (𝑇).

■ Notations:

Φ𝑘
𝐹 ={𝜑𝐹

1 , . . . , 𝜑
𝐹
𝑁𝑘,𝐹

},

Φ𝑘−1
𝑇 ={𝜑𝑇

1 , . . . , 𝜑
𝑇
𝑁𝑘,𝑇

},

Φ̂𝑘+1
𝑇 ={𝜑𝑇

1 , . . . , 𝜑
𝑇
𝑁𝑘+1,𝑇

}.

9 / 24



Matrix of 𝑝𝑘+1
𝑇

: 𝑉 𝑘
𝑇
→ P𝑘+1(𝑇) on selected bases

■ Pick bases Φ𝑘
𝐹
of P𝑘 (𝐹) for 𝐹 ∈ F𝑇 and Φ𝑘−1

𝑇
of P𝑘−1 (𝑇).

Basis of 𝑉 𝑘
𝑇
: Φ𝑘

𝐹1
× · · · ×Φ𝑘

𝐹𝑁𝜕𝑇
×Φ𝑘−1

𝑇 .

(Increasing dimension of mesh entities)

■ Pick basis Φ̂𝑘+1
𝑇

of P𝑘+1 (𝑇).

■ Notations: vector V𝑇 of 𝑣
𝑇
∈ 𝑉 𝑘

𝑇
written as:

V𝑇 =


V𝐹1

...

V𝐹𝑁𝜕𝑇

V𝑇


with

V𝐹 = [𝑉𝐹
𝑖 ]𝑖=1,...,𝑁𝑘,𝐹

coefficients on Φ𝑘
𝐹 ,

V𝑇 = [𝑉𝑇
𝑖 ]𝑖=1,...,𝑁𝑘−1,𝑇 coefficients on Φ𝑘−1

𝑇 .

9 / 24



Matrix of 𝑝𝑘+1
𝑇

: 𝑉 𝑘
𝑇
→ P𝑘+1(𝑇) on selected bases

■ Definition:

(∇𝑝𝑘+1𝑇 𝑣
𝑇
,∇𝑤)𝑇 + (𝑝𝑘+1𝑇 𝑣

𝑇
, 1)𝑇 (𝑤, 1)𝑇

= −(𝑣𝑇 ,Δ𝑤)𝑇 + (𝑣𝑇 , 1)𝑇 (𝑤, 1)𝑇 +
∑︁
𝐹∈F𝑇

(𝑣𝐹 ,∇𝑤 · 𝒏𝑇𝐹)𝐹 .

■ Algebraic translation: the coefficients P𝑇 of 𝑝𝑘+1
𝑇

𝑣
𝑇
on Φ̂𝑘+1

𝑇
satisfy(

S𝑇 + L̂𝑘+1𝑇 (L̂𝑘+1𝑇 )⊺
)
P𝑇 =

(
B𝑃,𝑇 + L̂𝑘+1𝑇 (L𝑘−1𝑇 )⊺

)
V𝑇 +

∑︁
𝐹∈F𝑇

B𝑃,𝐹V𝐹 ,

with

S𝑇 ≔
[
(∇𝜑𝑇

𝑖
,∇𝜑𝑇

𝑗
)𝑇
]
1≤𝑖, 𝑗≤𝑁𝑘+1,𝑇

, L̂𝑘+1𝑇 ≔ [(𝜑𝑇
𝑖 , 1)𝑇 ]1≤𝑖≤𝑁𝑘+1,𝑇 ,

B𝑃,𝑇 ≔
[
−(Δ𝜑𝑇

𝑖
, 𝜑𝑇

𝑗
)𝑇
]
1≤𝑖≤𝑁𝑘+1,𝑇 ,1≤ 𝑗≤𝑁𝑘−1,𝑇

, L𝑘−1𝑇 ≔ [(𝜑𝑇
𝑖 , 1)𝑇 ]1≤𝑖≤𝑁𝑘−1,𝑇

B𝑃,𝐹 ≔
[
(∇𝜑𝑇

𝑖
· 𝒏𝑇𝐹 , 𝜑𝐹

𝑗
)𝐹
]
1≤𝑖≤𝑁𝑘+1,𝑇 ,1≤ 𝑗≤𝑁𝑘,𝐹

.

10 / 24



Matrix of 𝑝𝑘+1
𝑇

: 𝑉 𝑘
𝑇
→ P𝑘+1(𝑇) on selected bases

■ The coefficients P𝑇 of 𝑝𝑘+1
𝑇

𝑣
𝑇
on Φ̂𝑘+1

𝑇
satisfy(

S𝑇 + L̂𝑘+1
𝑇 (L̂𝑘+1

𝑇 )⊺
)
P𝑇 =

(
B𝑃,𝑇 + L̂𝑘+1

𝑇 (L𝑘−1
𝑇 )⊺

)
V𝑇 +

∑︁
𝐹∈F𝑇

B𝑃,𝐹V𝐹 ,

S𝑇 ≔
[
(∇𝜑𝑇

𝑖
,∇𝜑𝑇

𝑗
)𝑇
]
1≤𝑖, 𝑗≤𝑁𝑘+1,𝑇

, L̂𝑘+1
𝑇 ≔ [(𝜑𝑇𝑖 , 1)𝑇 ]1≤𝑖≤𝑁𝑘+1,𝑇 ,

B𝑃,𝑇 ≔
[
−(Δ𝜑𝑇

𝑖
, 𝜑𝑇

𝑗
)𝑇
]
1≤𝑖≤𝑁𝑘+1,𝑇 ,1≤ 𝑗≤𝑁𝑘−1,𝑇

, L𝑘−1
𝑇 ≔ [(𝜑𝑇𝑖 , 1)𝑇 ]1≤𝑖≤𝑁𝑘−1,𝑇

B𝑃,𝐹 ≔
[
(∇𝜑𝑇

𝑖
· 𝒏𝑇𝐹 , 𝜑𝐹

𝑗
)𝐹

]
1≤𝑖≤𝑁𝑘+1,𝑇 ,1≤ 𝑗≤𝑁𝑘,𝐹

.

■ The matrix P𝑇 of 𝑝𝑘+1
𝑇

is thus obtained by solving(
S𝑇 + L̂𝑘+1𝑇 (L̂𝑘+1𝑇 )⊺

)
P𝑇 =

[
B𝑃,𝐹1

· · · B𝑃,𝐹𝑁𝜕𝑇
B𝑃,𝑇 + L̂𝑘+1

𝑇
(L𝑘−1

𝑇
)⊺
]
.

■ A few requirements for the library:

◦ Gram matrices of families of polynomials (integrate products).
◦ Differential operators between families of polynomials.
◦ Direct access to faces of an elements, and integrate on them.

11 / 24



Matrix of 𝑝𝑘+1
𝑇

: 𝑉 𝑘
𝑇
→ P𝑘+1(𝑇) on selected bases

■ The coefficients P𝑇 of 𝑝𝑘+1
𝑇

𝑣
𝑇
on Φ̂𝑘+1

𝑇
satisfy(

S𝑇 + L̂𝑘+1
𝑇 (L̂𝑘+1

𝑇 )⊺
)
P𝑇 =

(
B𝑃,𝑇 + L̂𝑘+1

𝑇 (L𝑘−1
𝑇 )⊺

)
V𝑇 +

∑︁
𝐹∈F𝑇

B𝑃,𝐹V𝐹 ,

S𝑇 ≔
[
(∇𝜑𝑇

𝑖
,∇𝜑𝑇

𝑗
)𝑇
]
1≤𝑖, 𝑗≤𝑁𝑘+1,𝑇

, L̂𝑘+1
𝑇 ≔ [(𝜑𝑇𝑖 , 1)𝑇 ]1≤𝑖≤𝑁𝑘+1,𝑇 ,

B𝑃,𝑇 ≔
[
−(Δ𝜑𝑇

𝑖
, 𝜑𝑇

𝑗
)𝑇
]
1≤𝑖≤𝑁𝑘+1,𝑇 ,1≤ 𝑗≤𝑁𝑘−1,𝑇

, L𝑘−1
𝑇 ≔ [(𝜑𝑇𝑖 , 1)𝑇 ]1≤𝑖≤𝑁𝑘−1,𝑇

B𝑃,𝐹 ≔
[
(∇𝜑𝑇

𝑖
· 𝒏𝑇𝐹 , 𝜑𝐹

𝑗
)𝐹

]
1≤𝑖≤𝑁𝑘+1,𝑇 ,1≤ 𝑗≤𝑁𝑘,𝐹

.

■ The matrix P𝑇 of 𝑝𝑘+1
𝑇

is thus obtained by solving(
S𝑇 + L̂𝑘+1𝑇 (L̂𝑘+1𝑇 )⊺

)
P𝑇 =

[
B𝑃,𝐹1

· · · B𝑃,𝐹𝑁𝜕𝑇
B𝑃,𝑇 + L̂𝑘+1

𝑇
(L𝑘−1

𝑇
)⊺
]
.

■ A few requirements for the library:

◦ Gram matrices of families of polynomials (integrate products).
◦ Differential operators between families of polynomials.
◦ Direct access to faces of an elements, and integrate on them.

11 / 24



HArDCore library (https://github.com/jdroniou/HArDCore)

■ Linear algebra: via Eigen (https://gitlab.com/libeigen/eigen).

■ In-house Mesh classes and Polynomial family classes.

■ Fast integration rules [Chin et al., 2015]: essential for polytopal methods,
requires full connectivity from element to vertices, as well as geometric
information (outer normal, etc.).

(In some instances, quadrature-based integration is still required.)

■ Various interfaces:

★ PaSTiX (https://solverstack.gitlabpages.inria.fr/pastix/),
★ PETSc (https://petsc.org/release/),
★ etc.

■ Many polytopal methods and schemes : HHO, DDR, VEM, elasticity with
Tresca contact, plates, Yang–Mills, etc.

12 / 24

https://github.com/jdroniou/HArDCore
https://gitlab.com/libeigen/eigen
https://solverstack.gitlabpages.inria.fr/pastix/
https://petsc.org/release/


Outline

1 Polytopal methods: examples of practical efficiency

2 Implementing HHO

3 Bases for polynomial spaces on cells, faces, edges

4 Mesh class and file data structure

13 / 24



Construction of polynomial bases

■ Store vectors of powers up to degree ℓ

{𝜶 = (𝜔1, . . . , 𝜔𝑑) ∈ N𝑑 :
∑︁
𝑖

𝜔𝑖 = ℓ} = {𝜶1,𝜶2, . . . ,𝜶𝑁ℓ
},

which define the monomials (𝒙𝑇 = center of mass of 𝑇 , ℎ𝑇 = diameter)

𝑚 𝑗 (𝒙) =
(
𝑥1 − 𝑥𝑇,1

ℎ𝑇

)𝛼𝑗,1

· · ·
(
𝑥1 − 𝑥𝑇,𝑑

ℎ𝑇

)𝛼𝑗,𝑑

.

■ Basis Φℓ
𝑇
= {𝜙1, . . . , 𝜙𝑁ℓ

} of Pℓ (𝑇): linear combination of monomials

𝜙𝑟 =

𝑁ℓ∑︁
𝑗=1

𝑀𝑟 𝑗𝑚 𝑗 .

■ Extensions: vector- or matrix-valued polynomials by tensorisation.

■ PolynomialFamily: defined by degree ℓ, mesh entity (𝑇 , 𝐹, etc.),
generators (list of scalars, vectors, matrices) and matrix 𝑀.

14 / 24



Construction of polynomial bases

Local polynomial bases on P𝑘 (𝑇), P𝑘 (𝐹) are orthonormalised!

Monomial basis functions Orthonormal basis functions

10−1.2 10−1 10−0.8 10−0.6

10−7

10−6

10−5

10−4

1

4

(a) Energy norm vs. ℎ, Kershaw meshes,
𝑘 = 3.

10−1.2 10−1 10−0.8 10−0.6

10−9

10−8

10−7

10−6

1

5

(b) 𝐿2-norm vs. ℎ, Kershaw meshes,
𝑘 = 3.

15 / 24



Unified class for all kinds of polynomial spaces

■ PolynomialFamily: defined by degree ℓ, mesh entity (𝑇 , 𝐹, etc.),
generators (list of scalars, vectors, matrices) and matrix 𝑀.

■ Suitable choices of generators and matrix describe PolynomialFamilies
that are not Pℓ (𝑋).
For example, for PF polynomial family:

★ gradient(PF), divergence(PF), curl(PF), etc.
★ 𝐿 (PF) if 𝐿 linear map acting on generators.

★ PF1 + PF2 (sum of spanned vector spaces).

■ Koszul complements are also described as PolynomialFamilies, e.g.:

R
𝑐,ℓ (𝑇) = (𝒙 − 𝒙𝑇 )Pℓ−1 (𝑇) , G

𝑐,ℓ (𝑇) = (𝒙 − 𝒙𝑇 ) × Pℓ−1 (𝑇)3.

(leads to straightforward description of arbitrary-order Nédélec and
Raviart–Thomas elements)

■ Unified class of polynomials means unified (fast) integration rules.

16 / 24



Unified class for all kinds of polynomial spaces

■ PolynomialFamily: defined by degree ℓ, mesh entity (𝑇 , 𝐹, etc.),
generators (list of scalars, vectors, matrices) and matrix 𝑀.

■ Suitable choices of generators and matrix describe PolynomialFamilies
that are not Pℓ (𝑋).
For example, for PF polynomial family:

★ gradient(PF), divergence(PF), curl(PF), etc.
★ 𝐿 (PF) if 𝐿 linear map acting on generators.

★ PF1 + PF2 (sum of spanned vector spaces).

■ Koszul complements are also described as PolynomialFamilies, e.g.:

R
𝑐,ℓ (𝑇) = (𝒙 − 𝒙𝑇 )Pℓ−1 (𝑇) , G

𝑐,ℓ (𝑇) = (𝒙 − 𝒙𝑇 ) × Pℓ−1 (𝑇)3.

(leads to straightforward description of arbitrary-order Nédélec and
Raviart–Thomas elements)

■ Unified class of polynomials means unified (fast) integration rules.

16 / 24



Outline

1 Polytopal methods: examples of practical efficiency

2 Implementing HHO

3 Bases for polynomial spaces on cells, faces, edges

4 Mesh class and file data structure

17 / 24



Classes for mesh entities

■ Classes for Cell, Face, Edge, Vertex.

All templated versions of the same MeshObject class.

■ Full connectivity, for example each Face embeds (pointers to) its
neighbouring Cells, and the Edges, Vertex it contains.

Useful for local constructions of operators, and fast integration rule.

■ Lots of additional embedded information (where relevant): global index;
diameter, volume/area/length; center of mass; outer normal, tangent
vector; relative orientations of sub-mesh entities; etc.

𝒏𝐹

𝐹

𝑇𝒏𝐸

𝐸

■ Other features:
★ Each cell/face has a simplicial subdivision.

★ 2-level meshes can be handled (coarsened mesh from fine mesh).

★ Mesh transformation/handlers: move vertices; split non-planar faces; etc.

18 / 24



Classes for mesh entities

■ Classes for Cell, Face, Edge, Vertex.

All templated versions of the same MeshObject class.

■ Full connectivity, for example each Face embeds (pointers to) its
neighbouring Cells, and the Edges, Vertex it contains.

Useful for local constructions of operators, and fast integration rule.

■ Lots of additional embedded information (where relevant): global index;
diameter, volume/area/length; center of mass; outer normal, tangent
vector; relative orientations of sub-mesh entities; etc.

■ Other features:

★ Each cell/face has a simplicial subdivision.

★ 2-level meshes can be handled (coarsened mesh from fine mesh).

★ Mesh transformation/handlers: move vertices; split non-planar faces; etc.

18 / 24



Mesh construction

■ Full mesh described in (large) “RF” mesh files with minimal
(non-redundant) information.

■ MeshBuilder takes care of creating all the connectivity.

Since last October, the development version of HArDCore also has an
interface with GMesh (https: // gmsh. info/ ).

19 / 24

https://gmsh.info/


RF mesh file data structure

■ Two files for each 3D mesh: M.node for vertices, M.ele for cells.

■ In M.node, one line per vertex:
<vertex id> <x coordinate> <y coordinate> <z coordinate>

■ In M.ele, each cell is given by:
★ Header line: <cell id> <number of faces>

★ For each face in the cell:
<local face id> <number of vertices> <id of first vertex> <id of second
vertex> . . .

(vertices listed in order around the face boundary)

20 / 24



Mesh builder

■ From RF file or GMesh mesh, creates std::vector to list vertices and
cells (as in RF file format).

■ To create a mesh entity in Mesh, it is split into simplices:

★ ensures that orientation will be correct,

★ allows for calculation of center of mass, measure, etc.

(Assumes that faces and cells are star-shaped w.r.t. average of their
vertices).

■ Entities (partially) created and added by increasing dimension:

★ Vertices (no connectivity at this stage).

★ Edges (connected to vertices and gives connexion between vertices).

★ etc.

21 / 24



Conclusion and transition

■ Building polytopal schemes requires:

★ Selecting degrees of freedom (polynomials on vertices, edges, faces,
elements).

★ Implementing reconstruction operators as the solutions to local problems
(Riez representation problems).

No need for explicit shape functions.

■ Same approach can be applied to (complex) finite elements, without
having to know their shape functions (typically challenging in some FE for
elasticity).

■ Coding polytopal methods is facilitated by a rich mesh structure, well-suite
polynomial bases and efficient libraries for polynomial integration.

22 / 24



Funded by the European Union (ERC Synergy, NEMESIS, project number
101115663). Views and opinions expressed are however those of the authors
only and do not necessarily reflect those of the European Union or the
European Research Council Executive Agency. Neither the European Union
nor the granting authority can be held responsible for them.

Thank you for your attention!

23 / 24



References

Chin, E. B., Lasserre, J. B., and Sukumar, N. (2015).

Numerical integration of homogeneous functions on convex and nonconvex polygons and polyhedra.
Comput. Mech., 56(6):967–981.

Di Pietro, D. A. and Droniou, J. (2022).

A discrete de Rham method for the Reissner–Mindlin plate bending problem on polygonal meshes.
Comput. Math. Appl., 125:136–149.

Touzalin, A. (2025).

Méthode des éléments virtuels pour la discrétisation des équations intégrales de frontière en électromagnétisme dans le domaine
fréquentiel.
PhD Thesis, CEA-CESTA.

24 / 24


	Polytopal methods: examples of practical efficiency
	Implementing HHO
	Bases for polynomial spaces on cells, faces, edges
	Mesh class and file data structure

