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Polytopal methods: examples of practical efficiency
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Reissner—Mindlin plate problem

[Di Pietro and Droniou, 2022]

Stabilised P2-(P! + B3) scheme | DDR scheme

nb. DOFs Error nb. DOFs Error
2403 0.138 550 0.161
9603 6.82e-2 2121 6.77e-2
38402 3.40e-2 8329 3.1e-2




Electromagnetic wave |

[Touzalin, 2025]

Problem: use a boundary element method to analyse the shielding
effectiveness of a perfectly conductive box with a very small slit.

2000mm




Meshes: conforming triangular for finite-element boundary method (bem),
non-conforming triangular (polygonal) for virtual element boundary method
(vbem-3z).
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Accuracy: comparison of modulus
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Implementing HHO




Algebraic realisation of potential

m Space: V& = {v, = (v7, VF)Fer;) : v € PAUT), ve € PH(F)}.

m Potential reconstruction (k > 1):

/Vp’;+1gr -Vw =— / vrAw + Z / ve (Vw-nrr) Yw e PHYT),
T T

Fefr F
k+1
/PT KTZ/VT-
T T

m Recast as: for all w € PK+1(T),

(VPI;‘-H‘_}Ts VW)T + (p];"-'-lET’ ]-)T(W, 1)T

=—(vr, AWy + Y (e, YW nrp)p + (vr, Dr(w, D
Fe¥r

(Solution of a Riesz representation problem)




Matrix of ph*l: V& — PK+1(T) on selected bases

T

m Pick bases ®X of PX(F) for F € Fr and @4~ of PX-1(T).
Basis of K; : <I)]1,§l XX (D];Nar X <I)]}_1.
(Increasing dimension of mesh entities)

m Pick basis ®X*! of P*+1(T).




Matrix of pA*1: vk — PH1(T) on selected bases

m Pick bases ®k of PX(F) for F € Fr and @4~ of PX-1(T).
Basis of Z’} : (I)lfp1 XX d)l;NaT x @1,
(Increasing dimension of mesh entities)
. -2k k
m Pick basis @} of PH1(T).
m Notations:

Ok =(oF .l ),

(Dk_l ={‘10{7 ceey <p]7\}k,T}a
B+l =T

(I) + —{901"""’0Nk+1,T}'




Matrix of ph*l: V& — PK+1(T) on selected bases

T

m Pick bases ®X of P¥(F) for F € F7 and ®k~1 of PF1(T).
Basis of VA d)’fEl XX CI)';NBT x @1,
(Increasing dimension of mesh entities)
m Pick basis @51 of PK+1(T).

m Notations: vector V. of v, € Z’} written as:

Vi,
Ve = [V it

f Ny coefficients on @,

yT = : wit e .. k—1
VFNaT Vr = [V} li=1.... Ny, coefficients on @77

Vr




Matrix of pA*1: vk — PH1(T) on selected bases

m Definition:

(Vp]]c"+1st VW)T + (p];‘+1vTa ].)T(W, 1)T

= (0 Aw)r + (o, Dr(w, D+ . (vp, Vw - nrp)p.
Fefr

m Algebraic translation: the coefficients Pz of p&*ly.. on &)’Fl satisfy

(Sr+ T @) Pr= (Brr + T WDT) Vit D BV,

Ferr
with
= [(Ve! Ve )T]lsi,jst+1,T , Lk+1 (@7 s DT)1<i<Ngor 1o
Bpr = [—(A‘P,-T,Soj )T]lsist+1,T,1sjst_1,T’ L5t = [(f, Drli<ienes o

Bp.r = [(V@] - nre, ¢f)F]

1Sl‘SNk+1’T,1SjSNk,F .




Matrix of pA*1: vk — PH1(T) on selected bases

m The coefficients P of pk*ly,. on @&*! satisfy

(Sr+ T @) Pr = (Brr + T WD) Vi + 3 BrsVr,
Fefr

= [(V‘JEIT9 V‘z;)T] Lk+1

— T k-1
Bpr = [~(A%]. ¢] )T]1<i<Nk+1T l<jsNe g’ LT = [(e! . Drlisisve,r
Bpr = [(VO! - nrp, ¢
k+1

[(901 ’ 1)T]1S1$Nk+1 T>

>

1<i,j<Nii1,1

)F] 1<i<Niy1,1.1<jSNKF*

® The matrix Pz of p7*" is thus obtained by solving

(ST +EI]<_+1(’L‘I]<_+1)T) Pr= [BP,F1 BP’FNBT BP,T +E§+1(L§—1)T] .




Matrix of pA*1: vk — PH1(T) on selected bases

m The coefficients P of pk*ly,. on @&*! satisfy

(ST +E§+1(E§+1)T) Pr = (BP,T +EI;~+1(LI;~_1)T) Vr + Z Bp rVrF,
Fefr

L& = (@7 Drlicienn oo

>

_ T ~T
= [(Ve].Ve))r| |<ij<Neorr

BP:T = [_(A;ElT’ QD;W)T] 1 : ’ Lk 1 [(901 ’ 1)T]1SISNk 1.T

1<i<Np41,1.1<j<Ni_11

Bp.r = [(V@] - nrr, ¢} )F]1<I<Nk+1 < <Nir

k+1

® The matrix Pz of p7*" is thus obtained by solving

(ST +EI;+1(’L‘I]<_+1)T) Pr= [BP,F1 BP’FNBT BP,T +E§+1(L§—1)T] .

m A few requirements for the library:
o Gram matrices of families of polynomials (integrate products).
o Differential operators between families of polynomials.
o Direct access to faces of an elements, and integrate on them. @ B -
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HArDCore libra ry (https://github.com/jdroniou/HArDCore)

m Linear algebra: via Eigen (https://gitlab.com/libeigen/eigen).

B In-house Mesh classes and Polynomial family classes.

B Fast integration rules [Chin et al., 2015]: essential for polytopal methods,
requires full connectivity from element to vertices, as well as geometric
information (outer normal, etc.).

(In some instances, quadrature-based integration is still required.)

m Various interfaces:
* PaSTiX (https://solverstack.gitlabpages.inria.fr/pastix/),
* PETSc (https://petsc.org/release/),
* etc.

B Many polytopal methods and schemes : HHO, DDR, VEM, elasticity with
Tresca contact, plates, Yang—Mills, etc.

@M -
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https://github.com/jdroniou/HArDCore
https://gitlab.com/libeigen/eigen
https://solverstack.gitlabpages.inria.fr/pastix/
https://petsc.org/release/

Outline

Bases for polynomial spaces on cells, faces, edges
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Construction of polynomial bases

m Store vectors of powers up to degree ¢

{a=(w1,...,04) € N9 : Zwi=€}={a1,ag,...,a1\]€},
i

which define the monomials (x7 = center of mass of T, hy = diameter)

aj, @j.d
C(xi—xra M (xi—xra\™
my() = (DAL (T )

hr hr
m Basis <I>§w ={¢1,...,¢n,} of PY(T): linear combination of monomials
Ne
(br = Z Mrjm]'.
j=1

m Extensions: vector- or matrix-valued polynomials by tensorisation.

B PolynomialFamily: defined by degree ¢, mesh entity (7, F, etc.),
generators (list of scalars, vectors, matrices) and matrix M.




Construction of polynomial bases

Local polynomial bases on P*(T), PX(F) are orthonormalised!

—e— Monomial basis functions —m— Orthonormal basis functions

1074 | E E
1 1076 E
-5 | . B
10 % 1077 E E
4 ] r 5
1076 | E| 107* E E
b ] 1079 E
107 3 1 E! r 1
| | | Il E) = Il Il | Il
1071.2 10*1 1070.8 1070.6 10—142 10—1 10—0.8 10—0.6
(a) Energy norm vs. h, Kershaw meshes, (b) L2-norm vs. h, Kershaw meshes,
k=3 k=3.
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Unified class for all kinds of polynomial spaces

B PolynomialFamily: defined by degree ¢, mesh entity (T, F, etc.),
generators (list of scalars, vectors, matrices) and matrix M.
m Suitable choices of generators and matrix describe PolynomialFamilies

that are not P¢(X).
For example, for PF polynomial family:

* gradient(PF), divergence(PF), curl(PF), etc.
x L(PF) if L linear map acting on generators.
* PFy + PFy (sum of spanned vector spaces).




Unified class for all kinds of polynomial spaces

B PolynomialFamily: defined by degree ¢, mesh entity (T, F, etc.),
generators (list of scalars, vectors, matrices) and matrix M.

m Suitable choices of generators and matrix describe PolynomialFamilies
that are not P¢(X).
For example, for PF polynomial family:

* gradient(PF), divergence(PF), curl(PF), etc.
x L(PF) if L linear map acting on generators.
* PFy + PFy (sum of spanned vector spaces).

m Koszul complements are also described as PolynomialFamilies, e.g.:
REUT) = (x —x)PHT),  G9UT) = (x —xp) x PHT)’.

(leads to straightforward description of arbitrary-order Nédélec and
Raviart—-Thomas elements)

‘erc

m Unified class of polynomials means unified (fast) integration rules.®
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Mesh class and file data structure




Classes for mesh entities

m Classes for Cell, Face, Edge, Vertex.
All templated versions of the same MeshObject class.

m Full connectivity, for example each Face embeds (pointers to) its
neighbouring Cells, and the Edges, Vertex it contains.

Useful for local constructions of operators, and fast integration rule.

B Lots of additional embedded information (where relevant): global index;
diameter, volume/area/length; center of mass; outer normal, tangent
vector: relative orientations of sub-mesh entities; etc.
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Classes for mesh entities

m Classes for Cell, Face, Edge, Vertex.
All templated versions of the same MeshObject class.

m Full connectivity, for example each Face embeds (pointers to) its
neighbouring Cells, and the Edges, Vertex it contains.
Useful for local constructions of operators, and fast integration rule.

B Lots of additional embedded information (where relevant): global index;

diameter, volume/area/length; center of mass; outer normal, tangent
vector: relative orientations of sub-mesh entities; etc.

m Other features:
* Each cell/face has a simplicial subdivision.

* 2-level meshes can be handled (coarsened mesh from fine mesh).

* Mesh transformation/handlers: move vertices; split non-planar faces; etc.
‘erc
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Mesh construction

m Full mesh described in (large) “RF" mesh files with minimal
(non-redundant) information.

B MeshBuilder takes care of creating all the connectivity.

Since last October, the development version of HArDCore also has an
interface with GMesh (https: // gmsh. info/ ).



https://gmsh.info/

RF mesh file data structure

m Two files for each 3D mesh: M.node for vertices, M.ele for cells.

B In M.node, one line per vertex:
<vertex id> <x coordinate> <y coordinate> <z coordinate>

m In M.ele, each cell is given by:
* Header line: <cell id> <number of faces>

* For each face in the cell:
<local face id> <number of vertices> <id of first vertex> <id of second

vertex> ...
(vertices listed in order around the face boundary)
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Mesh builder

m From RF file or GMesh mesh, creates std: :vector to list vertices and
cells (as in RF file format).

m To create a mesh entity in Mesh, it is split into simplices:
* ensures that orientation will be correct,

* allows for calculation of center of mass, measure, etc.
(Assumes that faces and cells are star-shaped w.r.t. average of their
vertices).

m Entities (partially) created and added by increasing dimension:
* Vertices (no connectivity at this stage).

* Edges (connected to vertices and gives connexion between vertices).

* etc.

@M -
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Conclusion and transition

m Building polytopal schemes requires:
* Selecting degrees of freedom (polynomials on vertices, edges, faces,
elements).
* Implementing reconstruction operators as the solutions to local problems
(Riez representation problems).

No need for explicit shape functions.

m Same approach can be applied to (complex) finite elements, without
having to know their shape functions (typically challenging in some FE for
elasticity).

m Coding polytopal methods is facilitated by a rich mesh structure, well-suite
polynomial bases and efficient libraries for polynomial integration.

om -
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