Towards a DSEL for polytopal methods

Rémy Dubois

N NEMESIS

New generation methods
for numerical simulations

Towards polytopal meshes in GMSH
Montpellier, 26—27 January 2026




Examples




Gradient reconstruction

m Consider

= {vh (vr)ress (VF)Fes,)) vr € P=U(T) for all T € T,
v € PX(F) for all F € F,

V6T|F =VF forall F € ?—“T}

m Let GX: VA — PK(T)3 be s.t., forall v, € V&,

/G§KT ST =— / vrdivrt +/ vor(t-nrr) V1 e PHT)4
T T ar




Gradient reconstruction: before (HArDCore)

const Cell & T = *mesh().cell(iT);
size_t dim_Pkpo = PolynomialSpaceDimension<Cell>::Poly(degree()+1);
MonomialCellIntegralsType int.mono_2kp2 = IntegrateCellMonomials(T, 2*degree()+2);
Eigen::MatrixXd MGT = GramMatrix(T, *cellBases(iT).Polykd, int_mono_2kp2);
Eigen::MatrixXd BGT = Eigen::MatrixXd::Zero(cellBases(iT).Polykd->dimension(),
dimensionCell(iT));
for (size.t iF = 0; iF < T.n_faces(); iF++) {

const Face & F = *T.face(iF);

DecomposePoly dec(F, MonomialScalarBasisFace(F, degree()));

auto PkdT_dot nTF nodes =
scalar_product (evaluate_quad<Function>: :compute (*¥cellBases(iT) .Polykd, dec.get_nodes()),
T.face_normal (iF));

auto PkdT_dot nTF_family PkF = dec.family(PkdT_dot_nTF_nodes);

Eigen::MatrixXd PF = extendOperator(T, F, Eigen::MatrixXd::Identity(dimensionFace(F),
dimensionFace(F)));

MonomialFaceIntegralsType int_mono_2k_F = IntegrateFaceMonomials(F, 2*degree());

BGT += GramMatrix(F, PkdT_dot_nTF_family PkF, *faceBases(F).Polyk, int.mono_2k_F) * PF;

}

DivergenceBasis<HHOSpace: :PolydBasisCellType> div_Pkd-basis(*cellBases(iT).Polykd);
BGT.rightCols(numLocalDofsCell()) -= GramMatrix(T, div_Pkd-basis, *cellBases(iT).Polyk,
int_mono_2kp2) ;

Eigen::MatrixXd GT = MGT.1d1lt().solve(BGT);

om -

4/30



Gradient reconstruction: after (Prometheus)

DiscreteSpace Vh(*mesh ptr, use_threads);
Vh.addScalarPolyCell("v_T", k-1);
Vh.addScalarPolyFace("v_partialT", k);

auto v.T = Vh.ScalarPolyCell("v_T");

auto v.dT = Vh.ScalarPolyFace("v_partialT");

for (auto T : mesh_ptr->get_cells();) {
auto test_space = TestSpace(*T);
test_space.addVectorPolyCell("tau", k);
auto TT = TrialTest(Vh, test_space, *T);
auto tau = test_space.VectorPolyCell("tau");

PolynomialFamily Pk3(*T, k, Vector);
auto GT = reconstruction( Vh, Pk3 );

auto lhs = integrateCell( dot(GT(v_t), tau), TT);
auto rhs = integrateBoundary(v_dT*dot(tau,normalT), TT)

- integrateCell(v_T*divergence(tau), TT); @ BE -
GT = solve( lhs, rhs ); 1 o

5/30



Gradient reconstruction: after (Prometheus)

Vi ={v, = (vD)rem, VF)rer,)) vy € PXHT) for all T € 7y,
vie € PX(F) for all F € 7,

vorlF = v for all F € 7—}}

DiscreteSpace Vh(*mesh ptr, use_threads);
Vh.addScalarPolyCell("v_T", k-1);
Vh.addScalarPolyFace ( "v_partialT", k);

auto v.T = Vh.ScalarPolyCell("v_T");

auto v_dT = Vh.ScalarPolyFace("v_partialT");




Gradient reconstruction: after (Prometheus)

vr e PH(T)?

auto test_space = TestSpace(*T);
test_space.addVectorPolyCell("tau", k);

auto tau = test_space.VectorPolyCell("tau");
auto TT = TrialTest(Vh, test_space, *T);




Gradient reconstruction: after (Prometheus)

Gy : Vi — PHT)°

PolynomialFamily Pk3(*T, k, Vector);

auto GT = reconstruction( Vh, Pk3 );




Gradient reconstruction: after (Prometheus)

/GI}KT-Tz—/deiVT+/ vor (T - nrr)
T T or

auto lhs = integrateCell( dot(GT(v_t), tau), TT);

auto rhs = - integrateCell(v_T*divergence(tau), TT)
+ integrateBoundary (v_dT*dot (tau,normalT), TT);

GT = solve( 1lhs, rhs );




Potential reconstruction

m Space: VK = {v, = (vr, VF)Fery) : v € PAUT), vi € PH(F)}.
m Potential reconstruction (k > 1):

‘/TVPI}HKT “Vw =-— /TvTAw + /M vor(Vw -nrp)  VYw € PK(T),

Recast as: for all w € P*+1(T),

(Vs v, Vw)r + (pk v, Dr(w, Dy

=—(vr, AW)r + (vor, Vw - nrp)ar + (vr, Dr(w, 7.




Potential reconstruction: implementation

DiscreteSpace Vh(*mesh_ptr, use_threads);
Vh.addScalarPolyCell("v.T", k-1);
Vh.addScalarPolyFace("v_partialT", k);

auto v.T = Vh.ScalarPolyCell("v_T");

auto v.dT = Vh.ScalarPolyFace("v_patrialT");

for (auto T : mesh_ptr->get_cells();) {
//test space
auto test_space = TestSpace(xT);
test_space.addScalarPolyCell("w", k+1);
auto w = test_space.ScalarPolyCell("w");
auto TT = TestTrial(Vh, test_space, *T);

// Instantiation of local operator
PolynomialFamily Pkpo(*T, k+1, Scalar);
auto PT = reconstruction( Vh, Pkpo );

// Definition of local operator

auto RHS_PT = integrateBoundary( scal( v.dT, dot( gradient(w), normalT) ), TT)
+ Gram(integrate T(v.T), integrate T(w), TT)
- integrateCell( v.T * divergence(gradient(w)) , TT);

auto LHS_PT = integrateCell( scal(gradient(PT) , gradient(w) ) , TT)
+ Gram( integrate T(PT), integrate T(w), TT);

PT = solve( LHS_PT, RHS_PT ); } -
om -

11/30




Potential reconstruction: implementation

VE ={v; = (1. (VP)Fer) 1 v € PEUT), vi € PR(F)}.

DiscreteSpace Vh(*mesh ptr, use_threads);
Vh.addScalarPolyCell("v_T", k-1);
Vh.addScalarPolyFace("v_F", k);

auto v.T = Vh.ScalarPolyCell("v_T");

auto v_dT = Vh.ScalarPolyFace("v_F");




Potential reconstruction: implementation

vw € PHY(T)

auto test_space = TestSpace(*T);

test_space.addScalarPolyCell("w", k+1);
auto w = test_space.ScalarPolyCell("w");
auto TT = TestTrial(Vh, test_space, *T);




Potential reconstruction: implementation

Pyt vy — PRI

PolynomialFamily Pkpo(*T, k+1, Scalar);
auto PT = reconstruction( Vh, Pkpo );




Potential reconstruction: implementation

(VP51 v, Vw)r + (p5 vy, Dr(w, Dy
= —(vr, AW)r + (vor, Vw - nrp)ar + (vr, )7 (w, D).

auto LHS_PT = integrateCell( gradient (PT)*gradient(w), TT)
+ Gram( integrate T(PT), integrate. T(w), TT);

auto RHS_PT

integrateBoundary( v_dT*dot (gradient(w) ,normalT) ), TT)
+ Gram(integrate_T(v.T), integrate T(w), TT)
integrateCell( v_T * divergence(gradient(w)) , TT);

PT = solve( LHS_PT, RHS_PT );

15/30




Potential reconstruction 2

m Space: Vk vy = 1, VF)Fer) t vr € Pk=U(T), vi € PX(F)}.
m Potential reconstruction (k > 1):

PYT) = {PUT) : /T w =0}

Vw € PEFN(T), A € POT)

/Vp’;”vT Vw+/ §+1vT/l——/vTAW+/ vor (VW'11TF)+/KT’1
T T T ar T




Potential reconstruction: implementation

DiscreteSpace Vh(*mesh ptr, use_threads);
Vh.addScalarPolyCell("v._T", k-1);
Vh.addScalarPolyFace("v_dT", k);

auto v.T = Vh.ScalarPolyCell("v_T");

auto v.dT = Vh.ScalarPolyFace("v_partialT");

for (auto T : mesh_ptr->get_cells();) {

auto test_space = TestSpace(xT);

std::function< ScalarPolyCellType (const Cell &, const size.t,
const scalarGenerator &) > constructPolynomial

= [1(const Cell & T, const size t k, const scalarGenerator & gen)

{ return zeroAveragePoly(T, k+1, gen); };

test_space.addPolyFamily (constructPolynomial, "w", k);

test_space.addScalarPolyCell("lambda", 0);

auto w = test_space.PolyCell("w");

auto lambda = PolyCell("lambda");

auto TT = TrialTest(Vh, test_space, *T);

PolynomialFamily Pk3(*T, k+1, Vector);

auto PT = reconstruction( Vh, Pk3 );

auto lhs = integrateCell( dot(gradient(PT(v.T)), gradient(w)), TT)
+ integrateCell(dot (PT(v_T),lambda));

auto rhs = integrateBoundary(v_dT*dot(gradient(w),normalT), TT)
- integrateCell(v_T*divergence(gradient (w))
+ integrateCell(v_T*lambda), TT);

PT = solve( lhs, rhs );




Outline

Polynomial Families




Frontend for polynomial bases

PolynomialFamily(element, degree, Type, [generator], [orth] );

* element: a mesh element (cell, face, edge, vertex)

* degree: polynomial degree

*  Type: either Scalar, Vector, Matrix or user defined generator

*  generator: double, Eigen::VectorXd or Eigen::MatrixXd (optional
parameter)

* orth: perfoms orthonormalization or not (optional parameter)

Simplification of basis and integration

HC2D HC3D Prometheus
basis 2 files, 3421 lines | 2 files, 3418 lines | 2 files, 1190 lines
integration | 9 files, 1888 lines | 14 files, 3622 lines | 2 files, 518 lines

erc

19/30




Features

m Methods acting on polynomial families return a polynomial family
auto PF2 = gradient(PF1);
Let PF1 being of type PolynomialFamily(T, k, Scalar)
Then PF2 is of type PolynomialFamily(T, k-1, Vector)
gradient (PF), divergence(PF), curl(PF), sum(PF1, PF2),
applyLinearTransform(PF, std::function) (linear map acting

on generators)

It allows to concatenate methods.

m Canonical methods

REUT) = (x —xp)PITH D). GUT) = (x —x7) x PITHT).
koszulGrad(T, K), koszulCurl(T, K) @

20/30




Outline

Discrete Spaces




Frontend for trial space

Discrete spaces are meant to create/store polynomial families defined on
every element of a mesh (type of the polynomial family define the element).
They will hold methods to retrieve local/global DOFs (hidden within DSEL's
expression).

m Example
DiscreteSpace Vh(*mesh_ptr, use_threads);

Vh.addScalarPolyCell("v_T", degree);
Vh.addScalarPolyEdge("v_h", degree);

B Methods to create polynomial families
addScalarPolyCell("name", degree)
addVectorPolyCell("name", degree)
addMatrixPolyCell("name", degree)

addScalarPolyFace("name", degree)

addPolyFamily(std::function, "name", degree)




Frontend for trial space

m Koszul complements:
ROUT) = (x —xp)PHT),  G9U(T) = (x —x1) x PTH(T)™.
B Implementation

std::function< VectorPolyCellType (const Cell &, const size t) >
constructKoszulGrad

= [1(const Cell & T, const size_t K) { return koszulGrad(T, K); };
Vh.addPolyFamily (constructPolynomial, "Gck", degree);

std: :function< ScalarPolyCellType (const Cell &, const size t) >
constructKoszulCurl

= [I(const Cell & T, const size t K) {return koszulCurl(T, K); };
Vh.addPolyFamily(constructPolynomial, "Rck", degree);

23/30



Frontend for test space

Test spaces are meant to create/store polynomial families defined on a
specific element and all sub-elements.

B Instantiation
auto test_space = TestSpace( element );

Element is a mesh element (Cell, Face, Edge, Vertex).

m Methods (similar ones as DiscreteSpace)
test_space.addVectorPolyCell("phi", degree);

The element of a TestSpace can restrict the methods.

24/30



Prometheus’ DSEL




Purpose

B Let's consider:

/ vor (7 - nrr)
oT

If we wish to stick closer to mathematical form and to translate it as:
auto rhs = integrateBoundary(v_dT*dot(tau,normalT), TT);
or:

auto rhs = integrateBoundary(dot(tau,normalT)*v_dT, TT);

m Prior calculation of v_Fxdot(tau,normalT) would not be meaningful as
no specific element is provided (v_F and normalT are undefined ...).

m Lazy evaluation and using boost::proto as expression parser were selected
to tackle it.

‘erc

26/30




Expressions

|
“/"‘)T T
T
auto ret = integrateCell(v_Txtau, TT);
|
/ vor (T - nrF)
oT
auto ret = integrateBoundary(v_dTxdot(tau,normalT), TT);
|

(/Tm(/rw),(/FvF)(/Fw)

auto ret = Gram(integrateT(v_T),integrateT(w), TT);
auto ret = Gram(integrateF(v_F),integrateF(w), TT);

B Return is automatically assemble with respect to local DOFs. @ Ea il

27/30



Local operators

®m Instantiation:

auto Op = reconstruction(domain, codomain);
* domain is a discrete space

* codomain is a polynomial family

m Definition:
auto op = solve( lhs, rhs );

With rhs and lhs being either results of Prometheus expressions or Eigen
matrix.

m Direct use within Prometheus expressions:

auto ret = integrateCell( gradient(Op) * w, TT);

om -

28/30



Local operators: example

Let GX : VA — PK(T)3 be s.t., for all v, € V&,

/G?KT"r:—/deivr+/ vor(t - nrr) VTePk(T)d
T T or

//Instantiation
PolynomialFamily Pk3(*T, degree, Vector);
auto GT = reconstruction( Vh, Pk3 );

//Definition
auto lhs = integrateCell( dot(GT(v.T), tau), TT);
auto rhs = integrateBoundary( v_dT*dot(tau,normalT), TT)

- integrateCell( v_T*divergence(tau) , TT);
GT = solve( lhs, rhs );

//Usage example (once defined)
auto ret = integrateCell( gradient(GT(v_T)) * gradient(tau)), TT);

29/30




* *
* 4k

Funded by
the European Union

Funded by the European Union (ERC Synergy, NEMESIS, project number
101115663). Views and opinions expressed are however those of the authors
only and do not necessarily reflect those of the European Union or the
European Research Council Executive Agency. Neither the European Union
nor the granting authority can be held responsible for them.

Thank you for your attention!




	Examples
	Polynomial Families
	Discrete Spaces
	Prometheus' DSEL

