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Examples




Gradient reconstruction

m Consider

= {vh (vr)ress (VF)Fes,)) vr € P=U(T) for all T € T,
v € PX(F) for all F € F,

V6T|F =VF forall F € ?—“T}

m Let GX: VA — PK(T)3 be s.t., forall v, € V&,

/G§KT ST =— / vrdivrt +/ vor(t-nrr) V1 e PHT)4
T T ar




Gradient reconstruction: before (HArDCore)

const Cell & T = *mesh().cell(iT);
size_t dim_Pkpo = PolynomialSpaceDimension<Cell>::Poly(degree()+1);
MonomialCellIntegralsType int.mono_2kp2 = IntegrateCellMonomials(T, 2*degree()+2);
Eigen::MatrixXd MGT = GramMatrix(T, *cellBases(iT).Polykd, int_mono_2kp2);
Eigen::MatrixXd BGT = Eigen::MatrixXd::Zero(cellBases(iT).Polykd->dimension(),
dimensionCell(iT));
for (size.t iF = 0; iF < T.n_faces(); iF++) {

const Face & F = *T.face(iF);

DecomposePoly dec(F, MonomialScalarBasisFace(F, degree()));

auto PkdT_dot nTF nodes =
scalar_product (evaluate_quad<Function>: :compute (*¥cellBases(iT) .Polykd, dec.get_nodes()),
T.face_normal (iF));

auto PkdT_dot nTF_family PkF = dec.family(PkdT_dot_nTF_nodes);

Eigen::MatrixXd PF = extendOperator(T, F, Eigen::MatrixXd::Identity(dimensionFace(F),
dimensionFace(F)));

MonomialFaceIntegralsType int_mono_2k_F = IntegrateFaceMonomials(F, 2*degree());

BGT += GramMatrix(F, PkdT_dot_nTF_family PkF, *faceBases(F).Polyk, int.mono_2k_F) * PF;

}

DivergenceBasis<HHOSpace: :PolydBasisCellType> div_Pkd-basis(*cellBases(iT).Polykd);
BGT.rightCols(numLocalDofsCell()) -= GramMatrix(T, div_Pkd-basis, *cellBases(iT).Polyk,
int_mono_2kp2) ;

Eigen::MatrixXd GT = MGT.1d1lt().solve(BGT);
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Gradient reconstruction: after (Prometheus)

DiscreteSpace Vh(*mesh ptr, use_threads);
Vh.addScalarPolyCell("v_T", k-1);
Vh.addScalarPolyFace("v_partialT", k);

auto v.T = Vh.ScalarPolyCell("v_T");

auto v.dT = Vh.ScalarPolyFace("v_partialT");

for (auto T : mesh_ptr->get_cells();) {
auto test_space = TestSpace(*T);
test_space.addVectorPolyCell("tau", k);
auto TT = TrialTest(Vh, test_space, *T);
auto tau = test_space.VectorPolyCell("tau");

PolynomialFamily Pk3(*T, k, Vector);
auto GT = reconstruction( Vh, Pk3 );

auto lhs = integrateCell( dot(GT(v_t), tau), TT);
auto rhs = integrateBoundary(v_dT*dot(tau,normalT), TT)

- integrateCell(v_T*divergence(tau), TT); @ BE -
GT = solve( lhs, rhs ); 1 o
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Gradient reconstruction: after (Prometheus)

Vi ={v, = (vD)rem, VF)rer,)) vy € PXHT) for all T € 7y,
vie € PX(F) for all F € 7,

vorlF = v for all F € 7—}}

DiscreteSpace Vh(*mesh ptr, use_threads);
Vh.addScalarPolyCell("v_T", k-1);
Vh.addScalarPolyFace ( "v_partialT", k);

auto v.T = Vh.ScalarPolyCell("v_T");

auto v_dT = Vh.ScalarPolyFace("v_partialT");




Gradient reconstruction: after (Prometheus)

vr e PH(T)?

auto test_space = TestSpace(*T);
test_space.addVectorPolyCell("tau", k);

auto tau = test_space.VectorPolyCell("tau");
auto TT = TrialTest(Vh, test_space, *T);




Gradient reconstruction: after (Prometheus)

Gy : Vi — PHT)°

PolynomialFamily Pk3(*T, k, Vector);

auto GT = reconstruction( Vh, Pk3 );




Gradient reconstruction: after (Prometheus)

/GI}KT-Tz—/deiVT+/ vor (T - nrr)
T T or

auto lhs = integrateCell( dot(GT(v_t), tau), TT);

auto rhs = - integrateCell(v_T*divergence(tau), TT)
+ integrateBoundary (v_dT*dot (tau,normalT), TT);

GT = solve( 1lhs, rhs );




Potential reconstruction

m Space: VK = {v, = (vr, VF)Fery) : v € PAUT), vi € PH(F)}.
m Potential reconstruction (k > 1):

‘/TVPI}HKT “Vw =-— /TvTAw + /M vor(Vw -nrp)  VYw € PK(T),

Recast as: for all w € P*+1(T),

(Vs v, Vw)r + (pk v, Dr(w, Dy

=—(vr, AW)r + (vor, Vw - nrp)ar + (vr, Dr(w, 7.




Potential reconstruction: implementation

DiscreteSpace Vh(*mesh_ptr, use_threads);
Vh.addScalarPolyCell("v.T", k-1);
Vh.addScalarPolyFace("v_partialT", k);

auto v.T = Vh.ScalarPolyCell("v_T");

auto v.dT = Vh.ScalarPolyFace("v_patrialT");

for (auto T : mesh_ptr->get_cells();) {
//test space
auto test_space = TestSpace(xT);
test_space.addScalarPolyCell("w", k+1);
auto w = test_space.ScalarPolyCell("w");
auto TT = TestTrial(Vh, test_space, *T);

// Instantiation of local operator
PolynomialFamily Pkpo(*T, k+1, Scalar);
auto PT = reconstruction( Vh, Pkpo );

// Definition of local operator

auto RHS_PT = integrateBoundary( scal( v.dT, dot( gradient(w), normalT) ), TT)
+ Gram(integrate T(v.T), integrate T(w), TT)
- integrateCell( v.T * divergence(gradient(w)) , TT);

auto LHS_PT = integrateCell( scal(gradient(PT) , gradient(w) ) , TT)
+ Gram( integrate T(PT), integrate T(w), TT);

PT = solve( LHS_PT, RHS_PT ); } -
om -
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Potential reconstruction: implementation

VE ={v; = (1. (VP)Fer) 1 v € PEUT), vi € PR(F)}.

DiscreteSpace Vh(*mesh ptr, use_threads);
Vh.addScalarPolyCell("v_T", k-1);
Vh.addScalarPolyFace("v_F", k);

auto v.T = Vh.ScalarPolyCell("v_T");

auto v_dT = Vh.ScalarPolyFace("v_F");




Potential reconstruction: implementation

vw € PHY(T)

auto test_space = TestSpace(*T);

test_space.addScalarPolyCell("w", k+1);
auto w = test_space.ScalarPolyCell("w");
auto TT = TestTrial(Vh, test_space, *T);




Potential reconstruction: implementation

Pyt vy — PRI

PolynomialFamily Pkpo(*T, k+1, Scalar);
auto PT = reconstruction( Vh, Pkpo );




Potential reconstruction: implementation

(VP51 v, Vw)r + (p5 vy, Dr(w, Dy
= —(vr, AW)r + (vor, Vw - nrp)ar + (vr, )7 (w, D).

auto LHS_PT = integrateCell( gradient (PT)*gradient(w), TT)
+ Gram( integrate T(PT), integrate. T(w), TT);

auto RHS_PT

integrateBoundary( v_dT*dot (gradient(w) ,normalT) ), TT)
+ Gram(integrate_T(v.T), integrate T(w), TT)
integrateCell( v_T * divergence(gradient(w)) , TT);

PT = solve( LHS_PT, RHS_PT );
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Potential reconstruction 2

m Space: Vk vy = 1, VF)Fer) t vr € Pk=U(T), vi € PX(F)}.
m Potential reconstruction (k > 1):

PYT) = {PUT) : /T w =0}

Vw € PEFN(T), A € POT)

/Vp’;”vT Vw+/ §+1vT/l——/vTAW+/ vor (VW'11TF)+/KT’1
T T T ar T




Potential reconstruction: implementation

DiscreteSpace Vh(*mesh ptr, use_threads);
Vh.addScalarPolyCell("v._T", k-1);
Vh.addScalarPolyFace("v_dT", k);

auto v.T = Vh.ScalarPolyCell("v_T");

auto v.dT = Vh.ScalarPolyFace("v_partialT");

for (auto T : mesh_ptr->get_cells();) {

auto test_space = TestSpace(xT);

std::function< ScalarPolyCellType (const Cell &, const size.t,
const scalarGenerator &) > constructPolynomial

= [1(const Cell & T, const size t k, const scalarGenerator & gen)

{ return zeroAveragePoly(T, k+1, gen); };

test_space.addPolyFamily (constructPolynomial, "w", k);

test_space.addScalarPolyCell("lambda", 0);

auto w = test_space.PolyCell("w");

auto lambda = PolyCell("lambda");

auto TT = TrialTest(Vh, test_space, *T);

PolynomialFamily Pk3(*T, k+1, Vector);

auto PT = reconstruction( Vh, Pk3 );

auto lhs = integrateCell( dot(gradient(PT(v.T)), gradient(w)), TT)
+ integrateCell(dot (PT(v_T),lambda));

auto rhs = integrateBoundary(v_dT*dot(gradient(w),normalT), TT)
- integrateCell(v_T*divergence(gradient (w))
+ integrateCell(v_T*lambda), TT);

PT = solve( lhs, rhs );




Outline

Polynomial Families




Frontend for polynomial bases

PolynomialFamily(element, degree, Type, [generator], [orth] );

* element: a mesh element (cell, face, edge, vertex)

* degree: polynomial degree

*  Type: either Scalar, Vector, Matrix or user defined generator

*  generator: double, Eigen::VectorXd or Eigen::MatrixXd (optional
parameter)

* orth: perfoms orthonormalization or not (optional parameter)

Simplification of basis and integration

HC2D HC3D Prometheus
basis 2 files, 3421 lines | 2 files, 3418 lines | 2 files, 1190 lines
integration | 9 files, 1888 lines | 14 files, 3622 lines | 2 files, 518 lines

erc
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Features

m Methods acting on polynomial families return a polynomial family
auto PF2 = gradient(PF1);
Let PF1 being of type PolynomialFamily(T, k, Scalar)
Then PF2 is of type PolynomialFamily(T, k-1, Vector)
gradient (PF), divergence(PF), curl(PF), sum(PF1, PF2),
applyLinearTransform(PF, std::function) (linear map acting

on generators)

It allows to concatenate methods.

m Canonical methods

REUT) = (x —xp)PITH D). GUT) = (x —x7) x PITHT).
koszulGrad(T, K), koszulCurl(T, K) @
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Outline

Discrete Spaces




Frontend for trial space

Discrete spaces are meant to create/store polynomial families defined on
every element of a mesh (type of the polynomial family define the element).
They will hold methods to retrieve local/global DOFs (hidden within DSEL's
expression).

m Example
DiscreteSpace Vh(*mesh_ptr, use_threads);

Vh.addScalarPolyCell("v_T", degree);
Vh.addScalarPolyEdge("v_h", degree);

B Methods to create polynomial families
addScalarPolyCell("name", degree)
addVectorPolyCell("name", degree)
addMatrixPolyCell("name", degree)

addScalarPolyFace("name", degree)

addPolyFamily(std::function, "name", degree)




Frontend for trial space

m Koszul complements:
ROUT) = (x —xp)PHT),  G9U(T) = (x —x1) x PTH(T)™.
B Implementation

std::function< VectorPolyCellType (const Cell &, const size t) >
constructKoszulGrad

= [1(const Cell & T, const size_t K) { return koszulGrad(T, K); };
Vh.addPolyFamily (constructPolynomial, "Gck", degree);

std: :function< ScalarPolyCellType (const Cell &, const size t) >
constructKoszulCurl

= [I(const Cell & T, const size t K) {return koszulCurl(T, K); };
Vh.addPolyFamily(constructPolynomial, "Rck", degree);
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Frontend for test space

Test spaces are meant to create/store polynomial families defined on a
specific element and all sub-elements.

B Instantiation
auto test_space = TestSpace( element );

Element is a mesh element (Cell, Face, Edge, Vertex).

m Methods (similar ones as DiscreteSpace)
test_space.addVectorPolyCell("phi", degree);

The element of a TestSpace can restrict the methods.
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Prometheus’ DSEL




Purpose

B Let's consider:

/ vor (7 - nrr)
oT

If we wish to stick closer to mathematical form and to translate it as:
auto rhs = integrateBoundary(v_dT*dot(tau,normalT), TT);
or:

auto rhs = integrateBoundary(dot(tau,normalT)*v_dT, TT);

m Prior calculation of v_Fxdot(tau,normalT) would not be meaningful as
no specific element is provided (v_F and normalT are undefined ...).

m Lazy evaluation and using boost::proto as expression parser were selected
to tackle it.

‘erc
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Expressions

|
“/"‘)T T
T
auto ret = integrateCell(v_Txtau, TT);
|
/ vor (T - nrF)
oT
auto ret = integrateBoundary(v_dTxdot(tau,normalT), TT);
|

(/Tm(/rw),(/FvF)(/Fw)

auto ret = Gram(integrateT(v_T),integrateT(w), TT);
auto ret = Gram(integrateF(v_F),integrateF(w), TT);

B Return is automatically assemble with respect to local DOFs. @ Ea il
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Local operators

®m Instantiation:

auto Op = reconstruction(domain, codomain);
* domain is a discrete space

* codomain is a polynomial family

m Definition:
auto op = solve( lhs, rhs );

With rhs and lhs being either results of Prometheus expressions or Eigen
matrix.

m Direct use within Prometheus expressions:

auto ret = integrateCell( gradient(Op) * w, TT);

om -
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Local operators: example

Let GX : VA — PK(T)3 be s.t., for all v, € V&,

/G?KT"r:—/deivr+/ vor(t - nrr) VTePk(T)d
T T or

//Instantiation
PolynomialFamily Pk3(*T, degree, Vector);
auto GT = reconstruction( Vh, Pk3 );

//Definition
auto lhs = integrateCell( dot(GT(v.T), tau), TT);
auto rhs = integrateBoundary( v_dT*dot(tau,normalT), TT)

- integrateCell( v_T*divergence(tau) , TT);
GT = solve( lhs, rhs );

//Usage example (once defined)
auto ret = integrateCell( gradient(GT(v_T)) * gradient(tau)), TT);
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Thank you for your attention!
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