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Gradient reconstruction

■ Consider

𝑉 𝑘
ℎ
≔

{
𝑣
ℎ
=
(
(𝑣𝑇 )𝑇∈Tℎ , (𝑣𝐹)𝐹∈Fℎ

)
)
: 𝑣𝑇 ∈ P𝑘−1 (𝑇) for all 𝑇 ∈ Tℎ,
𝑣𝐹 ∈ P𝑘 (𝐹) for all 𝐹 ∈ Fℎ

𝑣𝜕𝑇 |𝐹 = 𝑣𝐹 for all 𝐹 ∈ F𝑇

}
■ Let 𝐺𝑘

𝑇
: 𝑉 𝑘

𝑇
→ P𝑘 (𝑇)3 be s.t., for all 𝑣

𝑇
∈ 𝑉 𝑘

𝑇
,∫

𝑇

𝐺𝑘
𝑇𝑣𝑇 · 𝜏 = −

∫
𝑇

𝑣𝑇 div 𝜏 +
∫
𝜕𝑇

𝑣𝜕𝑇 (𝜏 · 𝑛𝑇𝐹) ∀𝜏 ∈ P𝑘 (𝑇)𝑑
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Gradient reconstruction: before (HArDCore)

const Cell & T = *mesh().cell(iT);
size t dim Pkpo = PolynomialSpaceDimension<Cell>::Poly(degree()+1);
MonomialCellIntegralsType int mono 2kp2 = IntegrateCellMonomials(T, 2*degree()+2);
Eigen::MatrixXd MGT = GramMatrix(T, *cellBases(iT).Polykd, int mono 2kp2);
Eigen::MatrixXd BGT = Eigen::MatrixXd::Zero(cellBases(iT).Polykd->dimension(),
dimensionCell(iT));
for (size t iF = 0; iF < T.n faces(); iF++) {

const Face & F = *T.face(iF);
DecomposePoly dec(F, MonomialScalarBasisFace(F, degree()));
auto PkdT dot nTF nodes =

scalar product(evaluate quad<Function>::compute(*cellBases(iT).Polykd, dec.get nodes()),
T.face normal(iF));

auto PkdT dot nTF family PkF = dec.family(PkdT dot nTF nodes);
Eigen::MatrixXd PF = extendOperator(T, F, Eigen::MatrixXd::Identity(dimensionFace(F),

dimensionFace(F)));
MonomialFaceIntegralsType int mono 2k F = IntegrateFaceMonomials(F, 2*degree());
BGT += GramMatrix(F, PkdT dot nTF family PkF, *faceBases(F).Polyk, int mono 2k F) * PF;

}

DivergenceBasis<HHOSpace::PolydBasisCellType> div Pkd basis(*cellBases(iT).Polykd);

BGT.rightCols(numLocalDofsCell()) -= GramMatrix(T, div Pkd basis, *cellBases(iT).Polyk,

int mono 2kp2);

Eigen::MatrixXd GT = MGT.ldlt().solve(BGT);
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Gradient reconstruction: after (Prometheus)

DiscreteSpace Vh(*mesh ptr, use threads);

Vh.addScalarPolyCell("v T", k-1);

Vh.addScalarPolyFace("v partialT", k);

auto v T = Vh.ScalarPolyCell("v T");

auto v dT = Vh.ScalarPolyFace("v partialT");

for (auto T : mesh ptr->get cells();) {
auto test space = TestSpace(*T);

test space.addVectorPolyCell("tau", k);

auto TT = TrialTest(Vh, test space, *T);

auto tau = test space.VectorPolyCell("tau");

PolynomialFamily Pk3(*T, k, Vector);

auto GT = reconstruction( Vh, Pk3 );

auto lhs = integrateCell( dot(GT(v t), tau), TT);

auto rhs = integrateBoundary(v dT*dot(tau,normalT), TT)

- integrateCell(v T*divergence(tau), TT);

GT = solve( lhs, rhs ); }
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Gradient reconstruction: after (Prometheus)

𝑉 𝑘
ℎ
≔

{
𝑣
ℎ
=
(
(𝑣𝑇 )𝑇∈Tℎ , (𝑣𝐹)𝐹∈Fℎ

)
)
: 𝑣𝑇 ∈ P𝑘−1 (𝑇) for all 𝑇 ∈ Tℎ,
𝑣𝐹 ∈ P𝑘 (𝐹) for all 𝐹 ∈ Fℎ

𝑣𝜕𝑇 |𝐹 = 𝑣𝐹 for all 𝐹 ∈ F𝑇

}
DiscreteSpace Vh(*mesh ptr, use threads);

Vh.addScalarPolyCell("v T", k-1);

Vh.addScalarPolyFace("v partialT", k);

auto v T = Vh.ScalarPolyCell("v T");

auto v dT = Vh.ScalarPolyFace("v partialT");
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Gradient reconstruction: after (Prometheus)

∀𝜏 ∈ P𝑘 (𝑇)𝑑

auto test space = TestSpace(*T);

test space.addVectorPolyCell("tau", k);

auto tau = test space.VectorPolyCell("tau");

auto TT = TrialTest(Vh, test space, *T);
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Gradient reconstruction: after (Prometheus)

𝐺𝑘
𝑇 : 𝑉 𝑘

𝑇
→ P𝑘 (𝑇)3

PolynomialFamily Pk3(*T, k, Vector);

auto GT = reconstruction( Vh, Pk3 );
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Gradient reconstruction: after (Prometheus)

∫
𝑇

𝐺𝑘
𝑇𝑣𝑇 · 𝜏 = −

∫
𝑇

𝑣𝑇 div 𝜏 +
∫
𝜕𝑇

𝑣𝜕𝑇 (𝜏 · 𝑛𝑇𝐹)

auto lhs = integrateCell( dot(GT(v t), tau), TT);

auto rhs = - integrateCell(v T*divergence(tau), TT)

+ integrateBoundary(v dT*dot(tau,normalT), TT);

GT = solve( lhs, rhs );
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Potential reconstruction

■ Space: 𝑉 𝑘
𝑇
= {𝑣

𝑇
= (𝑣𝑇 , (𝑣𝐹)𝐹∈F𝑇 ) : 𝑣𝑇 ∈ P𝑘−1 (𝑇) , 𝑣𝐹 ∈ P𝑘 (𝐹)}.

■ Potential reconstruction (𝑘 ≥ 1):∫
𝑇

∇𝑝𝑘+1𝑇 𝑣
𝑇
· ∇𝑤 = −

∫
𝑇

𝑣𝑇Δ𝑤 +
∫
𝜕𝑇

𝑣𝜕𝑇 (∇𝑤 · 𝑛𝑇𝐹) ∀𝑤 ∈ P𝑘+1(𝑇),

Recast as: for all 𝑤 ∈ P𝑘+1 (𝑇),

(∇𝑝𝑘+1𝑇 𝑣
𝑇
,∇𝑤)𝑇 + (𝑝𝑘+1𝑇 𝑣

𝑇
, 1)𝑇 (𝑤, 1)𝑇

= −(𝑣𝑇 ,Δ𝑤)𝑇 + (𝑣𝜕𝑇 ,∇𝑤 · 𝑛𝑇𝐹)𝜕𝑇 + (𝑣𝑇 , 1)𝑇 (𝑤, 1)𝑇 .
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Potential reconstruction: implementation

DiscreteSpace Vh(*mesh ptr, use threads);
Vh.addScalarPolyCell("v T", k-1);
Vh.addScalarPolyFace("v partialT", k);
auto v T = Vh.ScalarPolyCell("v T");
auto v dT = Vh.ScalarPolyFace("v patrialT");

for (auto T : mesh ptr->get cells();) {
//test space
auto test space = TestSpace(*T);
test space.addScalarPolyCell("w", k+1);
auto w = test space.ScalarPolyCell("w");
auto TT = TestTrial(Vh, test space, *T);

// Instantiation of local operator
PolynomialFamily Pkpo(*T, k+1, Scalar);
auto PT = reconstruction( Vh, Pkpo );

// Definition of local operator
auto RHS PT = integrateBoundary( scal( v dT, dot( gradient(w), normalT) ), TT)

+ Gram(integrate T(v T), integrate T(w), TT)
- integrateCell( v T * divergence(gradient(w)) , TT);

auto LHS PT = integrateCell( scal(gradient(PT) , gradient(w) ) , TT)
+ Gram( integrate T(PT), integrate T(w), TT);

PT = solve( LHS PT, RHS PT ); }
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Potential reconstruction: implementation

𝑉 𝑘
𝑇
= {𝑣

𝑇
= (𝑣𝑇 , (𝑣𝐹)𝐹∈F𝑇 ) : 𝑣𝑇 ∈ P𝑘−1 (𝑇) , 𝑣𝐹 ∈ P𝑘 (𝐹)}.

DiscreteSpace Vh(*mesh ptr, use threads);

Vh.addScalarPolyCell("v T", k-1);

Vh.addScalarPolyFace("v F", k);

auto v T = Vh.ScalarPolyCell("v T");

auto v dT = Vh.ScalarPolyFace("v F");

12 / 30



Potential reconstruction: implementation

∀𝑤 ∈ P𝑘+1(𝑇)

auto test space = TestSpace(*T);

test space.addScalarPolyCell("w", k+1);

auto w = test space.ScalarPolyCell("w");

auto TT = TestTrial(Vh, test space, *T);
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Potential reconstruction: implementation

𝑝𝑘+1𝑇 : 𝑉 𝑘
𝑇
→ P𝑘+1(𝑇)

PolynomialFamily Pkpo(*T, k+1, Scalar);

auto PT = reconstruction( Vh, Pkpo );
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Potential reconstruction: implementation

(∇𝑝𝑘+1𝑇 𝑣
𝑇
,∇𝑤)𝑇 + (𝑝𝑘+1𝑇 𝑣

𝑇
, 1)𝑇 (𝑤, 1)𝑇

= −(𝑣𝑇 ,Δ𝑤)𝑇 + (𝑣𝜕𝑇 ,∇𝑤 · 𝑛𝑇𝐹)𝜕𝑇 + (𝑣𝑇 , 1)𝑇 (𝑤, 1)𝑇 .

auto LHS PT = integrateCell( gradient(PT)*gradient(w), TT)

+ Gram( integrate T(PT), integrate T(w), TT);

auto RHS PT = integrateBoundary( v dT*dot(gradient(w),normalT) ), TT)

+ Gram(integrate T(v T), integrate T(w), TT)

- integrateCell( v T * divergence(gradient(w)) , TT);

PT = solve( LHS PT, RHS PT );
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Potential reconstruction 2

■ Space: 𝑉 𝑘
𝑇
= {𝑣

𝑇
= (𝑣𝑇 , (𝑣𝐹)𝐹∈F𝑇 ) : 𝑣𝑇 ∈ P𝑘−1 (𝑇) , 𝑣𝐹 ∈ P𝑘 (𝐹)}.

■ Potential reconstruction (𝑘 ≥ 1):

P𝑘+1
0 (𝑇) = {P𝑘+1 (𝑇) :

∫
𝑇

𝑤 = 0}

∀𝑤 ∈ P𝑘+1
𝑂 (𝑇) , 𝜆 ∈ P0 (𝑇)∫

𝑇

∇𝑝𝑘+1𝑇 𝑣
𝑇
· ∇𝑤 +

∫
𝑇

𝑝𝑘+1𝑇 𝑣
𝑇
𝜆 = −

∫
𝑇

𝑣𝑇Δ𝑤 +
∫
𝜕𝑇

𝑣𝜕𝑇 (∇𝑤 · 𝑛𝑇𝐹) +
∫
𝑇

𝑣
𝑇
𝜆
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Potential reconstruction: implementation 2

DiscreteSpace Vh(*mesh ptr, use threads);
Vh.addScalarPolyCell("v T", k-1);
Vh.addScalarPolyFace("v dT", k);
auto v T = Vh.ScalarPolyCell("v T");
auto v dT = Vh.ScalarPolyFace("v partialT");

for (auto T : mesh ptr->get cells();) {
auto test space = TestSpace(*T);
std::function< ScalarPolyCellType (const Cell &, const size t,

const scalarGenerator &) > constructPolynomial
= [](const Cell & T, const size t k, const scalarGenerator & gen)

{ return zeroAveragePoly(T, k+1, gen); };
test space.addPolyFamily(constructPolynomial, "w", k);
test space.addScalarPolyCell("lambda", 0);
auto w = test space.PolyCell("w");
auto lambda = PolyCell("lambda");

auto TT = TrialTest(Vh, test space, *T);
PolynomialFamily Pk3(*T, k+1, Vector);
auto PT = reconstruction( Vh, Pk3 );
auto lhs = integrateCell( dot(gradient(PT(v T)), gradient(w)), TT)

+ integrateCell(dot(PT(v T),lambda));
auto rhs = integrateBoundary(v dT*dot(gradient(w),normalT), TT)

- integrateCell(v T*divergence(gradient(w))
+ integrateCell(v T*lambda), TT);

PT = solve( lhs, rhs );

}
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Frontend for polynomial bases

PolynomialFamily(element, degree, Type, [generator], [orth] );

★ element: a mesh element (cell, face, edge, vertex)

★ degree: polynomial degree

★ Type: either Scalar, Vector, Matrix or user defined generator

★ generator: double, Eigen::VectorXd or Eigen::MatrixXd (optional
parameter)

★ orth: perfoms orthonormalization or not (optional parameter)

Simplification of basis and integration

HC2D HC3D Prometheus
basis 2 files, 3421 lines 2 files, 3418 lines 2 files, 1190 lines

integration 9 files, 1888 lines 14 files, 3622 lines 2 files, 518 lines
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Features

■ Methods acting on polynomial families return a polynomial family

auto PF2 = gradient(PF1);

Let PF1 being of type PolynomialFamily(T, k, Scalar)
Then PF2 is of type PolynomialFamily(T, k-1, Vector)

gradient(PF), divergence(PF), curl(PF), sum(PF1, PF2),

applyLinearTransform(PF, std::function) (linear map acting

on generators)

It allows to concatenate methods.

■ Canonical methods

R
𝑐,ℓ (𝑇) = (𝒙 − 𝒙𝑇 )Pℓ−1 (𝑇) , G

𝑐,ℓ (𝑇) = (𝒙 − 𝒙𝑇 ) × Pℓ−1 (𝑇)3.

koszulGrad(T, K), koszulCurl(T, K)

20 / 30



Outline

1 Examples

2 Polynomial Families

3 Discrete Spaces

4 Prometheus’ DSEL

21 / 30



Frontend for trial space

Discrete spaces are meant to create/store polynomial families defined on
every element of a mesh (type of the polynomial family define the element).
They will hold methods to retrieve local/global DOFs (hidden within DSEL’s
expression).

■ Example

DiscreteSpace Vh(*mesh ptr, use threads);

Vh.addScalarPolyCell("v T", degree);

Vh.addScalarPolyEdge("v h", degree);

■ Methods to create polynomial families

addScalarPolyCell("name", degree)

addVectorPolyCell("name", degree)

addMatrixPolyCell("name", degree)

addScalarPolyFace("name", degree)

...

addPolyFamily(std::function, "name", degree)
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Frontend for trial space

■ Koszul complements:

R
𝑐,ℓ (𝑇) = (𝒙 − 𝒙𝑇 )Pℓ−1 (𝑇) , G

𝑐,ℓ (𝑇) = (𝒙 − 𝒙𝑇 ) × Pℓ−1 (𝑇)3.

■ Implementation

std::function< VectorPolyCellType (const Cell &, const size t) >

constructKoszulGrad

= [](const Cell & T, const size t K) { return koszulGrad(T, K); };
Vh.addPolyFamily(constructPolynomial, "Gck", degree);

std::function< ScalarPolyCellType (const Cell &, const size t) >

constructKoszulCurl

= [](const Cell & T, const size t K) {return koszulCurl(T, K); };
Vh.addPolyFamily(constructPolynomial, "Rck", degree);
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Frontend for test space

Test spaces are meant to create/store polynomial families defined on a
specific element and all sub-elements.

■ Instantiation

auto test space = TestSpace( element );

Element is a mesh element (Cell, Face, Edge, Vertex).

■ Methods (similar ones as DiscreteSpace)

test space.addVectorPolyCell("phi", degree);

The element of a TestSpace can restrict the methods.
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Purpose

■ Let’s consider: ∫
𝜕𝑇

𝑣𝜕𝑇 (𝜏 · 𝑛𝑇𝐹)

If we wish to stick closer to mathematical form and to translate it as:
auto rhs = integrateBoundary(v dT*dot(tau,normalT), TT);

or:
auto rhs = integrateBoundary(dot(tau,normalT)*v dT, TT);

■ Prior calculation of v F*dot(tau,normalT) would not be meaningful as
no specific element is provided (v F and normalT are undefined ...).

■ Lazy evaluation and using boost::proto as expression parser were selected
to tackle it.
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Expressions

■ ∫
𝑇

𝑣𝑇 𝜏

auto ret = integrateCell(v T*tau, TT);

■ ∫
𝜕𝑇

𝑣𝜕𝑇 (𝜏 · 𝑛𝑇𝐹)

auto ret = integrateBoundary(v dT*dot(tau,normalT), TT);

■

(
∫
𝑇

𝑣𝑇 ) (
∫
𝑇

𝑤) , (
∫
𝐹

𝑣𝐹) (
∫
𝐹

𝑤)

auto ret = Gram(integrateT(v T),integrateT(w), TT);

auto ret = Gram(integrateF(v F),integrateF(w), TT);

■ Return is automatically assemble with respect to local DOFs.
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Local operators

■ Instantiation:

auto Op = reconstruction(domain, codomain);

★ domain is a discrete space

★ codomain is a polynomial family

■ Definition:

auto op = solve( lhs, rhs );

With rhs and lhs being either results of Prometheus expressions or Eigen
matrix.

■ Direct use within Prometheus expressions:

auto ret = integrateCell( gradient(Op) * w, TT);
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Local operators: example

Let 𝐺𝑘
𝑇
: 𝑉 𝑘

𝑇
→ P𝑘 (𝑇)3 be s.t., for all 𝑣

𝑇
∈ 𝑉 𝑘

𝑇
,∫

𝑇

𝐺𝑘
𝑇𝑣𝑇 · 𝜏 = −

∫
𝑇

𝑣𝑇 div 𝜏 +
∫
𝜕𝑇

𝑣𝜕𝑇 (𝜏 · 𝑛𝑇𝐹) ∀𝜏 ∈ P𝑘 (𝑇)𝑑

//Instantiation
PolynomialFamily Pk3(*T, degree, Vector);
auto GT = reconstruction( Vh, Pk3 );

//Definition
auto lhs = integrateCell( dot(GT(v T), tau), TT);
auto rhs = integrateBoundary( v dT*dot(tau,normalT), TT)

- integrateCell( v T*divergence(tau) , TT);

GT = solve( lhs, rhs );

//Usage example (once defined)

auto ret = integrateCell( gradient(GT(v T)) * gradient(tau)), TT);
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