
Towards a DSEL for polytopal methods

Rémy Dubois

Towards polytopal meshes in GMSH

Montpellier, 26–27 January 2026

1 / 30

Outline

1 Examples

2 Polynomial Families

3 Discrete Spaces

4 Prometheus’ DSEL

2 / 30

Gradient reconstruction

■ Consider

𝑉 𝑘
ℎ
≔

{
𝑣
ℎ
=
(
(𝑣𝑇)𝑇∈Tℎ , (𝑣𝐹)𝐹∈Fℎ

)
)
: 𝑣𝑇 ∈ P𝑘−1 (𝑇) for all 𝑇 ∈ Tℎ,
𝑣𝐹 ∈ P𝑘 (𝐹) for all 𝐹 ∈ Fℎ

𝑣𝜕𝑇 |𝐹 = 𝑣𝐹 for all 𝐹 ∈ F𝑇

}
■ Let 𝐺𝑘

𝑇
: 𝑉 𝑘

𝑇
→ P𝑘 (𝑇)3 be s.t., for all 𝑣

𝑇
∈ 𝑉 𝑘

𝑇
,∫

𝑇

𝐺𝑘
𝑇𝑣𝑇 · 𝜏 = −

∫
𝑇

𝑣𝑇 div 𝜏 +
∫
𝜕𝑇

𝑣𝜕𝑇 (𝜏 · 𝑛𝑇𝐹) ∀𝜏 ∈ P𝑘 (𝑇)𝑑

3 / 30

Gradient reconstruction: before (HArDCore)

const Cell & T = *mesh().cell(iT);
size t dim Pkpo = PolynomialSpaceDimension<Cell>::Poly(degree()+1);
MonomialCellIntegralsType int mono 2kp2 = IntegrateCellMonomials(T, 2*degree()+2);
Eigen::MatrixXd MGT = GramMatrix(T, *cellBases(iT).Polykd, int mono 2kp2);
Eigen::MatrixXd BGT = Eigen::MatrixXd::Zero(cellBases(iT).Polykd->dimension(),
dimensionCell(iT));
for (size t iF = 0; iF < T.n faces(); iF++) {

const Face & F = *T.face(iF);
DecomposePoly dec(F, MonomialScalarBasisFace(F, degree()));
auto PkdT dot nTF nodes =

scalar product(evaluate quad<Function>::compute(*cellBases(iT).Polykd, dec.get nodes()),
T.face normal(iF));

auto PkdT dot nTF family PkF = dec.family(PkdT dot nTF nodes);
Eigen::MatrixXd PF = extendOperator(T, F, Eigen::MatrixXd::Identity(dimensionFace(F),

dimensionFace(F)));
MonomialFaceIntegralsType int mono 2k F = IntegrateFaceMonomials(F, 2*degree());
BGT += GramMatrix(F, PkdT dot nTF family PkF, *faceBases(F).Polyk, int mono 2k F) * PF;

}

DivergenceBasis<HHOSpace::PolydBasisCellType> div Pkd basis(*cellBases(iT).Polykd);

BGT.rightCols(numLocalDofsCell()) -= GramMatrix(T, div Pkd basis, *cellBases(iT).Polyk,

int mono 2kp2);

Eigen::MatrixXd GT = MGT.ldlt().solve(BGT);

4 / 30

Gradient reconstruction: after (Prometheus)

DiscreteSpace Vh(*mesh ptr, use threads);

Vh.addScalarPolyCell("v T", k-1);

Vh.addScalarPolyFace("v partialT", k);

auto v T = Vh.ScalarPolyCell("v T");

auto v dT = Vh.ScalarPolyFace("v partialT");

for (auto T : mesh ptr->get cells();) {
auto test space = TestSpace(*T);

test space.addVectorPolyCell("tau", k);

auto TT = TrialTest(Vh, test space, *T);

auto tau = test space.VectorPolyCell("tau");

PolynomialFamily Pk3(*T, k, Vector);

auto GT = reconstruction(Vh, Pk3);

auto lhs = integrateCell(dot(GT(v t), tau), TT);

auto rhs = integrateBoundary(v dT*dot(tau,normalT), TT)

- integrateCell(v T*divergence(tau), TT);

GT = solve(lhs, rhs); }
5 / 30

Gradient reconstruction: after (Prometheus)

𝑉 𝑘
ℎ
≔

{
𝑣
ℎ
=
(
(𝑣𝑇)𝑇∈Tℎ , (𝑣𝐹)𝐹∈Fℎ

)
)
: 𝑣𝑇 ∈ P𝑘−1 (𝑇) for all 𝑇 ∈ Tℎ,
𝑣𝐹 ∈ P𝑘 (𝐹) for all 𝐹 ∈ Fℎ

𝑣𝜕𝑇 |𝐹 = 𝑣𝐹 for all 𝐹 ∈ F𝑇

}
DiscreteSpace Vh(*mesh ptr, use threads);

Vh.addScalarPolyCell("v T", k-1);

Vh.addScalarPolyFace("v partialT", k);

auto v T = Vh.ScalarPolyCell("v T");

auto v dT = Vh.ScalarPolyFace("v partialT");

6 / 30

Gradient reconstruction: after (Prometheus)

∀𝜏 ∈ P𝑘 (𝑇)𝑑

auto test space = TestSpace(*T);

test space.addVectorPolyCell("tau", k);

auto tau = test space.VectorPolyCell("tau");

auto TT = TrialTest(Vh, test space, *T);

7 / 30

Gradient reconstruction: after (Prometheus)

𝐺𝑘
𝑇 : 𝑉 𝑘

𝑇
→ P𝑘 (𝑇)3

PolynomialFamily Pk3(*T, k, Vector);

auto GT = reconstruction(Vh, Pk3);

8 / 30

Gradient reconstruction: after (Prometheus)

∫
𝑇

𝐺𝑘
𝑇𝑣𝑇 · 𝜏 = −

∫
𝑇

𝑣𝑇 div 𝜏 +
∫
𝜕𝑇

𝑣𝜕𝑇 (𝜏 · 𝑛𝑇𝐹)

auto lhs = integrateCell(dot(GT(v t), tau), TT);

auto rhs = - integrateCell(v T*divergence(tau), TT)

+ integrateBoundary(v dT*dot(tau,normalT), TT);

GT = solve(lhs, rhs);

9 / 30

Potential reconstruction

■ Space: 𝑉 𝑘
𝑇
= {𝑣

𝑇
= (𝑣𝑇 , (𝑣𝐹)𝐹∈F𝑇) : 𝑣𝑇 ∈ P𝑘−1 (𝑇) , 𝑣𝐹 ∈ P𝑘 (𝐹)}.

■ Potential reconstruction (𝑘 ≥ 1):∫
𝑇

∇𝑝𝑘+1𝑇 𝑣
𝑇
· ∇𝑤 = −

∫
𝑇

𝑣𝑇Δ𝑤 +
∫
𝜕𝑇

𝑣𝜕𝑇 (∇𝑤 · 𝑛𝑇𝐹) ∀𝑤 ∈ P𝑘+1(𝑇),

Recast as: for all 𝑤 ∈ P𝑘+1 (𝑇),

(∇𝑝𝑘+1𝑇 𝑣
𝑇
,∇𝑤)𝑇 + (𝑝𝑘+1𝑇 𝑣

𝑇
, 1)𝑇 (𝑤, 1)𝑇

= −(𝑣𝑇 ,Δ𝑤)𝑇 + (𝑣𝜕𝑇 ,∇𝑤 · 𝑛𝑇𝐹)𝜕𝑇 + (𝑣𝑇 , 1)𝑇 (𝑤, 1)𝑇 .

10 / 30

Potential reconstruction: implementation

DiscreteSpace Vh(*mesh ptr, use threads);
Vh.addScalarPolyCell("v T", k-1);
Vh.addScalarPolyFace("v partialT", k);
auto v T = Vh.ScalarPolyCell("v T");
auto v dT = Vh.ScalarPolyFace("v patrialT");

for (auto T : mesh ptr->get cells();) {
//test space
auto test space = TestSpace(*T);
test space.addScalarPolyCell("w", k+1);
auto w = test space.ScalarPolyCell("w");
auto TT = TestTrial(Vh, test space, *T);

// Instantiation of local operator
PolynomialFamily Pkpo(*T, k+1, Scalar);
auto PT = reconstruction(Vh, Pkpo);

// Definition of local operator
auto RHS PT = integrateBoundary(scal(v dT, dot(gradient(w), normalT)), TT)

+ Gram(integrate T(v T), integrate T(w), TT)
- integrateCell(v T * divergence(gradient(w)) , TT);

auto LHS PT = integrateCell(scal(gradient(PT) , gradient(w)) , TT)
+ Gram(integrate T(PT), integrate T(w), TT);

PT = solve(LHS PT, RHS PT); }

11 / 30

Potential reconstruction: implementation

𝑉 𝑘
𝑇
= {𝑣

𝑇
= (𝑣𝑇 , (𝑣𝐹)𝐹∈F𝑇) : 𝑣𝑇 ∈ P𝑘−1 (𝑇) , 𝑣𝐹 ∈ P𝑘 (𝐹)}.

DiscreteSpace Vh(*mesh ptr, use threads);

Vh.addScalarPolyCell("v T", k-1);

Vh.addScalarPolyFace("v F", k);

auto v T = Vh.ScalarPolyCell("v T");

auto v dT = Vh.ScalarPolyFace("v F");

12 / 30

Potential reconstruction: implementation

∀𝑤 ∈ P𝑘+1(𝑇)

auto test space = TestSpace(*T);

test space.addScalarPolyCell("w", k+1);

auto w = test space.ScalarPolyCell("w");

auto TT = TestTrial(Vh, test space, *T);

13 / 30

Potential reconstruction: implementation

𝑝𝑘+1𝑇 : 𝑉 𝑘
𝑇
→ P𝑘+1(𝑇)

PolynomialFamily Pkpo(*T, k+1, Scalar);

auto PT = reconstruction(Vh, Pkpo);

14 / 30

Potential reconstruction: implementation

(∇𝑝𝑘+1𝑇 𝑣
𝑇
,∇𝑤)𝑇 + (𝑝𝑘+1𝑇 𝑣

𝑇
, 1)𝑇 (𝑤, 1)𝑇

= −(𝑣𝑇 ,Δ𝑤)𝑇 + (𝑣𝜕𝑇 ,∇𝑤 · 𝑛𝑇𝐹)𝜕𝑇 + (𝑣𝑇 , 1)𝑇 (𝑤, 1)𝑇 .

auto LHS PT = integrateCell(gradient(PT)*gradient(w), TT)

+ Gram(integrate T(PT), integrate T(w), TT);

auto RHS PT = integrateBoundary(v dT*dot(gradient(w),normalT)), TT)

+ Gram(integrate T(v T), integrate T(w), TT)

- integrateCell(v T * divergence(gradient(w)) , TT);

PT = solve(LHS PT, RHS PT);

15 / 30

Potential reconstruction 2

■ Space: 𝑉 𝑘
𝑇
= {𝑣

𝑇
= (𝑣𝑇 , (𝑣𝐹)𝐹∈F𝑇) : 𝑣𝑇 ∈ P𝑘−1 (𝑇) , 𝑣𝐹 ∈ P𝑘 (𝐹)}.

■ Potential reconstruction (𝑘 ≥ 1):

P𝑘+1
0 (𝑇) = {P𝑘+1 (𝑇) :

∫
𝑇

𝑤 = 0}

∀𝑤 ∈ P𝑘+1
𝑂 (𝑇) , 𝜆 ∈ P0 (𝑇)∫

𝑇

∇𝑝𝑘+1𝑇 𝑣
𝑇
· ∇𝑤 +

∫
𝑇

𝑝𝑘+1𝑇 𝑣
𝑇
𝜆 = −

∫
𝑇

𝑣𝑇Δ𝑤 +
∫
𝜕𝑇

𝑣𝜕𝑇 (∇𝑤 · 𝑛𝑇𝐹) +
∫
𝑇

𝑣
𝑇
𝜆

16 / 30

Potential reconstruction: implementation 2

DiscreteSpace Vh(*mesh ptr, use threads);
Vh.addScalarPolyCell("v T", k-1);
Vh.addScalarPolyFace("v dT", k);
auto v T = Vh.ScalarPolyCell("v T");
auto v dT = Vh.ScalarPolyFace("v partialT");

for (auto T : mesh ptr->get cells();) {
auto test space = TestSpace(*T);
std::function< ScalarPolyCellType (const Cell &, const size t,

const scalarGenerator &) > constructPolynomial
= [](const Cell & T, const size t k, const scalarGenerator & gen)

{ return zeroAveragePoly(T, k+1, gen); };
test space.addPolyFamily(constructPolynomial, "w", k);
test space.addScalarPolyCell("lambda", 0);
auto w = test space.PolyCell("w");
auto lambda = PolyCell("lambda");

auto TT = TrialTest(Vh, test space, *T);
PolynomialFamily Pk3(*T, k+1, Vector);
auto PT = reconstruction(Vh, Pk3);
auto lhs = integrateCell(dot(gradient(PT(v T)), gradient(w)), TT)

+ integrateCell(dot(PT(v T),lambda));
auto rhs = integrateBoundary(v dT*dot(gradient(w),normalT), TT)

- integrateCell(v T*divergence(gradient(w))
+ integrateCell(v T*lambda), TT);

PT = solve(lhs, rhs);

}

17 / 30

Outline

1 Examples

2 Polynomial Families

3 Discrete Spaces

4 Prometheus’ DSEL

18 / 30

Frontend for polynomial bases

PolynomialFamily(element, degree, Type, [generator], [orth]);

★ element: a mesh element (cell, face, edge, vertex)

★ degree: polynomial degree

★ Type: either Scalar, Vector, Matrix or user defined generator

★ generator: double, Eigen::VectorXd or Eigen::MatrixXd (optional
parameter)

★ orth: perfoms orthonormalization or not (optional parameter)

Simplification of basis and integration

HC2D HC3D Prometheus
basis 2 files, 3421 lines 2 files, 3418 lines 2 files, 1190 lines

integration 9 files, 1888 lines 14 files, 3622 lines 2 files, 518 lines

19 / 30

Features

■ Methods acting on polynomial families return a polynomial family

auto PF2 = gradient(PF1);

Let PF1 being of type PolynomialFamily(T, k, Scalar)
Then PF2 is of type PolynomialFamily(T, k-1, Vector)

gradient(PF), divergence(PF), curl(PF), sum(PF1, PF2),

applyLinearTransform(PF, std::function) (linear map acting

on generators)

It allows to concatenate methods.

■ Canonical methods

R
𝑐,ℓ (𝑇) = (𝒙 − 𝒙𝑇)Pℓ−1 (𝑇) , G

𝑐,ℓ (𝑇) = (𝒙 − 𝒙𝑇) × Pℓ−1 (𝑇)3.

koszulGrad(T, K), koszulCurl(T, K)

20 / 30

Outline

1 Examples

2 Polynomial Families

3 Discrete Spaces

4 Prometheus’ DSEL

21 / 30

Frontend for trial space

Discrete spaces are meant to create/store polynomial families defined on
every element of a mesh (type of the polynomial family define the element).
They will hold methods to retrieve local/global DOFs (hidden within DSEL’s
expression).

■ Example

DiscreteSpace Vh(*mesh ptr, use threads);

Vh.addScalarPolyCell("v T", degree);

Vh.addScalarPolyEdge("v h", degree);

■ Methods to create polynomial families

addScalarPolyCell("name", degree)

addVectorPolyCell("name", degree)

addMatrixPolyCell("name", degree)

addScalarPolyFace("name", degree)

...

addPolyFamily(std::function, "name", degree)
22 / 30

Frontend for trial space

■ Koszul complements:

R
𝑐,ℓ (𝑇) = (𝒙 − 𝒙𝑇)Pℓ−1 (𝑇) , G

𝑐,ℓ (𝑇) = (𝒙 − 𝒙𝑇) × Pℓ−1 (𝑇)3.

■ Implementation

std::function< VectorPolyCellType (const Cell &, const size t) >

constructKoszulGrad

= [](const Cell & T, const size t K) { return koszulGrad(T, K); };
Vh.addPolyFamily(constructPolynomial, "Gck", degree);

std::function< ScalarPolyCellType (const Cell &, const size t) >

constructKoszulCurl

= [](const Cell & T, const size t K) {return koszulCurl(T, K); };
Vh.addPolyFamily(constructPolynomial, "Rck", degree);

23 / 30

Frontend for test space

Test spaces are meant to create/store polynomial families defined on a
specific element and all sub-elements.

■ Instantiation

auto test space = TestSpace(element);

Element is a mesh element (Cell, Face, Edge, Vertex).

■ Methods (similar ones as DiscreteSpace)

test space.addVectorPolyCell("phi", degree);

The element of a TestSpace can restrict the methods.

24 / 30

Outline

1 Examples

2 Polynomial Families

3 Discrete Spaces

4 Prometheus’ DSEL

25 / 30

Purpose

■ Let’s consider: ∫
𝜕𝑇

𝑣𝜕𝑇 (𝜏 · 𝑛𝑇𝐹)

If we wish to stick closer to mathematical form and to translate it as:
auto rhs = integrateBoundary(v dT*dot(tau,normalT), TT);

or:
auto rhs = integrateBoundary(dot(tau,normalT)*v dT, TT);

■ Prior calculation of v F*dot(tau,normalT) would not be meaningful as
no specific element is provided (v F and normalT are undefined ...).

■ Lazy evaluation and using boost::proto as expression parser were selected
to tackle it.

26 / 30

Expressions

■ ∫
𝑇

𝑣𝑇 𝜏

auto ret = integrateCell(v T*tau, TT);

■ ∫
𝜕𝑇

𝑣𝜕𝑇 (𝜏 · 𝑛𝑇𝐹)

auto ret = integrateBoundary(v dT*dot(tau,normalT), TT);

■

(
∫
𝑇

𝑣𝑇) (
∫
𝑇

𝑤) , (
∫
𝐹

𝑣𝐹) (
∫
𝐹

𝑤)

auto ret = Gram(integrateT(v T),integrateT(w), TT);

auto ret = Gram(integrateF(v F),integrateF(w), TT);

■ Return is automatically assemble with respect to local DOFs.

27 / 30

Local operators

■ Instantiation:

auto Op = reconstruction(domain, codomain);

★ domain is a discrete space

★ codomain is a polynomial family

■ Definition:

auto op = solve(lhs, rhs);

With rhs and lhs being either results of Prometheus expressions or Eigen
matrix.

■ Direct use within Prometheus expressions:

auto ret = integrateCell(gradient(Op) * w, TT);

28 / 30

Local operators: example

Let 𝐺𝑘
𝑇
: 𝑉 𝑘

𝑇
→ P𝑘 (𝑇)3 be s.t., for all 𝑣

𝑇
∈ 𝑉 𝑘

𝑇
,∫

𝑇

𝐺𝑘
𝑇𝑣𝑇 · 𝜏 = −

∫
𝑇

𝑣𝑇 div 𝜏 +
∫
𝜕𝑇

𝑣𝜕𝑇 (𝜏 · 𝑛𝑇𝐹) ∀𝜏 ∈ P𝑘 (𝑇)𝑑

//Instantiation
PolynomialFamily Pk3(*T, degree, Vector);
auto GT = reconstruction(Vh, Pk3);

//Definition
auto lhs = integrateCell(dot(GT(v T), tau), TT);
auto rhs = integrateBoundary(v dT*dot(tau,normalT), TT)

- integrateCell(v T*divergence(tau) , TT);

GT = solve(lhs, rhs);

//Usage example (once defined)

auto ret = integrateCell(gradient(GT(v T)) * gradient(tau)), TT);

29 / 30

Funded by the European Union (ERC Synergy, NEMESIS, project number
101115663). Views and opinions expressed are however those of the authors
only and do not necessarily reflect those of the European Union or the
European Research Council Executive Agency. Neither the European Union
nor the granting authority can be held responsible for them.

Thank you for your attention!

30 / 30

	Examples
	Polynomial Families
	Discrete Spaces
	Prometheus' DSEL

