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Introduction

Motivations: challenging demands on computational methods

Features of the multi-physical model T

ald

@ Thin structures and highly (.
heterogeneous media f

@ Scattered fields at e (
high-frequency/small-wavelength
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@ Proper representation of the
hydraulic conctact at the interfaces

@ Possibly nonlinear coupled problem anche o - O suwports Q Bulings

construction can tilt, sink
and fail
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Introduction

Motivations
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Why using space-time methods? (instead of space discretization —— | —
& time stepping)
@ High-order accuracy in both space and time can be easily X == >
obtained —
@ Spectral convergence can be otained by polynomial S 5‘ —
refinement o 2 4 S
@ Implicit methods or explicit methods with local CFL =
condition —
@ The numerical solution is available at all times in (0,T) e EEEEE—

Iteration 135
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Why using space-time methods? (instead of space discretization —— | —
& time stepping)
@ High-order accuracy in both space and time can be easily ~ == —
obtained - -
@ Spectral convergence can be otained by polynomial S 5‘ —
refinement S — = —
@ Implicit methods or explicit methods with local CFL =
condition —

@ The numerical solution is available at all times in (0,T)

Iteration 135

Major drawback: high complexity

@ time dependent problems in d space dimensions — (d + 1)-dimensional problems
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Introduction

State of the art: minimal bibliography

Cartesian mesh

@ [Hughes & Hulbert, 1988], [Monk & Richter 2005], [Dumbser et al. 2007], [Steinbach & Zank,
2017], [Ernesti & Wieners, 2019], [Bansal et al. 2020]

Unstructured mesh

@ [ldesman 2007], [Abedi et al, 2006], [Dérfler et al. 2016], [Kretzschmar et al. 2016], [Banjai et
al. 2017], [Barucq et al. 2018], [Gopalakrishnan et al. 2017], [Moiola & Perugia, 2018],
[Perugia et al. 2020]
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Introduction

State of the art: minimal bibliography

Cartesian mesh
@ [Hughes & Hulbert, 1988], [Monk & Richter 2005], [Dumbser et al. 2007], [Steinbach & Zank,
2017], [Ernesti & Wieners, 2019], [Bansal et al. 2020]

Unstructured mesh
@ [ldesman 2007], [Abedi et al, 2006], [Dérfler et al. 2016], [Kretzschmar et al. 2016], [Banjai et
al. 2017], [Barucq et al. 2018], [Gopalakrishnan et al. 2017], [Moiola & Perugia, 2018],
[Perugia et al. 2020]

Our contribution: Acceleration of the solution algorithm for dG methods
applied to wave problems on prismatic meshes (tensor-product meshes
obtained starting from a general polygonal grid for the space
discretization).
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Space discretization by the PolydG method

[Riviere, (2008); Di Pietro, Ern, (2012); Cangiani, Dong, Georgoulis, Houston, (2017)]

Advantages of the PolyDG discretization
@ Support of general polytopal meshes, local mesh refinement & coarsening
@ High-order accuracy
@ Robustness with respect to heterogeneous media

@ Scalable and parallel implementation algorithm

o
o

Under suitable hypothesis on the mesh, we can exploit trace-inverse inequality and optimal
approximation results in P*(7).
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Mathematical model: governing equations

Wave equation: find (p,) : Q x (0,7] — R such that n
Orp — 1 =0, in Q x (0,77,
o — A = f, in O x (0,77, L ) Ly
p =0, inp x (0,71,
Ve -n = ga, in 'y x (0,77,
(@, 9)(t = 0) = (¢0,%0) in Q.

@ () is an open bounded polygonal domain with Lipschitz boundary.
@ c is the wave speed velocity

@ 9., ¢o, and g are regular data.
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Space-discretization: PolydG discretization

Functional space: Vi, = {¢} € L2(2) : @px € [Pp(k)], p = 1 Ve € Th}.
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Space-discretization: PolydG discretization

Functional space: Vi, = {¢} € L2(2) : @px € [Pp(k)], p = 1 Ve € Th}.

Variational formulation: For ¢t € (0,71, find (on,¥r)(t) € Vi = Vj X V3, s.t.

M(fn, w) = M(thp, w) =0 Yw e Vj,
M(Yn, 2) + An(pn,2) = F(z) Vz € V.

M(u,v) = (u,v)q Yu,v € Vp,
An(u,v) = (Y4, Vrv)a — {Vaul, D7, — Qb A2Vaobz, + Ol [oDF, Vu,ve V.

@ Standard notation for jump [-] and average {-} operators
@ x € L®(F},) is a suitable stabilization function
Remarks:
@ Stability estimates are independent of the discretization parameters

@ Optimal order of convergence (energy mesh dependent norm) w.r.t. the mesh sizes h and suboptimal w.r.t.
the polynomial dregree p.
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Time integration

dG method for first order differential system

Differential system: for any t € (0,7, find (¢n,¥n) € RV x RMr st

[é J\04 [ZZ] (t)+[2 _oI [z’;] (t)=[12h} (), te(0,T]
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Time integration

dG method for first order differential system

Differential system: for any t € (0,7, find (¢n,¥n) € RV x RMr st

[é J\04 [ZZ] (t)+[2 _oI [z’;] (t)=[12h} (), te(0,T]

Mesh partition:

Time interval I = (0,T] partitioned into Np

ta by tF toi time-slabs I,, = (tn—1,tn] having length
- = - At =tn, —tp—1,forn=1,...,N withtg =0
L i and ty =T.
0 o th-1 tn 2 e T t

Polynomial spaces: V,; = {¢ : I, — RV sit. @ e [P"(I,)]""}, where N}, = dim(V4) and

Vaa = {p € L*(0,T] s:t. |1, € Vi[}.
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Time integration

dG method for first order differential system

dG formulation: find (pa4c, Yac) € Vag X Vae such that

Ny Np—
Z (pac,w)r1, — (Yac,w Z pac] t5) + @ac(07) - w(0™), =0 - w(0")
n=1 n=1
N . Np—1 Np
Z (Mac, 2)1, + (Apac, 2)r, + Z M[ac]n - z(ty) + Mtpac(07) - z(0%) = Z (Fn,2)1,
n=1 n=1 n=1
+Mapg - z(()*),

for any (w, 2) € Vac x Vag and where [w], = w(t}) — w(t;,) for any w € V.
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Time integration
dG method for first order differential system

dG formulation: find (pa4c, Yac) € Vag X Vae such that

Nop Np—
>, (pic w)1, — (Yac,w Z Pac] tn) +ac(07) - w(07), = o - w(07)
n=1 n=1
N . Np—1 Np
Z (Mac, 2)1, + (Apac, 2)r, + Z M[ac]n - z(ty) + Mtpac(07) - z(0%) = Z (Fn,2)1,
n=1 = n=1

M - 2(0%),

for any (w, 2) € Vac x Vag and where [w], = w(t}) — w(t;,) for any w € V.

Remarks:
@ Stability estimate (mesh dependent seminorm) is independent of the discretization parameters

@ Optimal order of convergence (mesh dependent seminorm) w.r.t. the time step At (O(At"12))
suboptimal w.r.t. the polynomial dregree r.
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Space-time linear system

Block bi-diagonal matrix of the form

where

@ I is the identity matrix in RV»("+1),

@ A=M® (L + Ls) + A® L7, with L; time matrices,
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with G =

]T are the unknown expansions coefficients in I; and b; are the right hand sides.
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Solution strategy

Advance in time by solving:
Girai = by,

Gla,- = bl — Goa,-_l, 7= 2, ...,NT
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Solution strategy

Advance in time by solving:
Girai = by,

Gia; = b; — Goovj—1, i=2,...,Nr
Remarks:
Equivalence between time-dG and fully implicit Runge-Kutta methods
Good properties of A-stability, L-stability and B-stability — good for stiff problems
In practice one needs to invert only the matrix A
X System matrix A is not symmetric

X Dimension of A — iterative solver (matrix-free) to be used for large problems

Example: Q2 = (0, 1)% x (0, 2] partioned into 400 x 40 polygonal prisms. Polynomial degree p = r = 2
and dzm(A) 576.000.

‘ Time to solution [s]
Direct 8
GMRES 109
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Fast solution techiques for space-time discretizations

«AO>» 4F>» «Z>» « > =

Da
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Space-time decomposition and XT-RAS method

@ Let us consider the fully discretize problem of the form: Au = f, AeR™*Y o, feRY, N >> 1.
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AeRYVN 4 feRY, N >>1.

@ Let us consider the fully discretize problem of the form: Au = f,

(a,1) with L =b—a > 0 and

(0,b) and Qo =

@ Set Nx = 2-subdomain space decomposition 2,

split [0,7] in Nz overlapping subdomains:
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Space-time decomposition and XT-RAS method

@ Let us consider the fully discretize problem of the form: Au = f, AeR™*Y o, feRY, N >> 1.
@ Set Nx = 2-subdomain space decomposition ©; = (0,b) and Q2 = (a,1) with L =b—a > 0 and
split [0,7] in Nz overlapping subdomains:

1 e e e [ 1 I e e e
b
LI EEEREE R R 1 R R T
a L N [ ) ) N N R
We consider the classical RAS form (now XT)
NxNp _
u=wu"+ Y RUACR(f - Au”),
k=1

where
@ Ry and Ry, are the XT restriction matrices (including a partition of unity),

@ Aj are XT matrices corresponding to the local subproblems.



XT-RAS: Numerical experiments (T = 10, Ny

numerical solution iterate 0
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numerical solution
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XT-RAS: Numerical experiments (7" = 10,

space

numerical solution

0.9 A
0.8

0.7 "
0.6

0.5

0.4

0.3 ha
0.2

0.1 i

O0 2 4 6 8 10

time

=)

iterate 3

10

=] F = = £ DA



XT-RAS: Numerical experiments (7" = 10,

space

numerical solution

1

0.9 A
0.8

0.7 "
0.6

0.5

0.4

0.3 ha
0.2

0.1 i

O0 2 4 6 8 10

time

=)

iterate 4




XT-RAS: Numerical experiments (7" = 10,
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XT-RAS: Numerical experiments (T = 10, Ny = 2, Ny = 20)
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XT-RAS: Numerical experiments (7" = 10,
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XT-RAS: Numerical experiments (T = 10, Ny = 2, Ny = 20)
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XT-RAS: Numerical experiments (7" = 10,

numerical solution iterate 40 %105
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XT-RAS: Numerical experiments (T = 10, Ny = 2, Ny = 20)

numerical solution iterate 60 %10%
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XT-RAS: Numerical experiments (7" = 10, N;
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XT-RAS: Numerical experiments (1" =

£

Nt =20 Nr =1
10° 105 N : :
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3 100 e 2 10
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T 10° T 107
g o
10-10 n . v v L 10_10
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XT-RAS: Numerical experiments (7’

—e— XT-RAS
—o— GMRES-XT-RAS
" —e— GMRES )
5 ©
3 10°% 3
wn wn
g g
[ [
2 >
& 10 ©
g e
10-10 n . v v L 10_10
0 20 40 60 80 100 0 20 40 60 80 100
iterates iterates
Remarks:

@ There is no much gain in using a decomposition in time (N7 = 1 Waveform Relaxation (WR)).
@ The “good information” need to propagate through the time subdomains to reach T'.

@ The error propagates and grows through the subdomains. — Useless subdomain solves.

14/24



XT-RAS: Numerical experiments (7' = 10, Ny

—e— XT-RAS
—o— GMRES-XT-RAS
" —e— GMRES )
5 ©
3 10°% 3
wn wn
g g
[ [
2 >
& 10 ©
g e
10-10 n . v v L 10_10
0 20 40 60 80 100 0 20 40 60 80 100
iterates iterates
Remarks:

@ There is no much gain in using a decomposition in time (N7 = 1 Waveform Relaxation (WR)).
@ The “good information” need to propagate through the time subdomains to reach T'.
@ The error propagates and grows through the subdomains. — Useless subdomain solves.

2min(Ly,Lo)+2L
c

@ Error analysis: error contraction for T' < — Better to use large overlap.
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WR/XT-RAS and Unmapped Tent-Pitching Scheme

@ Consider a space-decomposition as in the figure (with generous overlap),
@ a time decomposition with T, = @ (Tsup = % at first iteration ... rectangular tents),
@ and a red-black WR iteration (RBSWR).

n=2

n=1
! regions of redundant computations
e

~

regions of redundant comptations.
R
~

\V W
X5 X5
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@ Consider a space-decomposition as in the figure (with generous overlap),
1251 _ 1951
c

@ a time decomposition with T, = (Tsun = 5= at first iteration ...

XT-WR/XT-RAS and Unmapped Tent-Pitching Scheme

rectangular tents),

and a red-black WR iteration (RBSWR).

=1 n=3 n=4 ;

” = =
regions of redundant complrtations. ‘) ‘ ‘ j //,, //,/ ‘ %}é?,%%%%

e , ] Y N N o _ _
<[~ s e
joit Q3 Qs Q Qs Qs ol Q3 Qs Q Q Qs
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XT-WR/XT-RAS and Unmapped Tent-Pitching Scheme

@ Consider a space-decomposition as in the figure (with generous overlap),

= 1%l at first iteration ... rectangular tents),

@ a time decomposition with T, = % (Tour = 52

@ and a red-black WR iteration (RBSWR).

n=4

n=1 on= n=3 :
regions of redundant complitations ‘) ‘ ‘ //, //,/ ‘ %}é?,%%%%//}%

= Y ) Dl % 4// , /
<[ - -
Q Q3 Qs ot Q Qs Q Q3 Qg Q2 Qs Qs

@ Equivalent to a mapped tent pitching scheme [Gopalakrishnan, 2017].
We call it Unmapped tent pitching scheme.

@ Numerically one needs an explicit scheme (or accept a residual/iterate).

D RIA'Ri(f — Au™).

@ It can be implemented as u" ™! = u™ +
ke KRBSWR
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XT-RAS and Pipeline strategies

One could solve all subdomains in space instead of alternating between the red and black ones:
u=u"+ Y RIAR(f - Au”).
kekopace
. Q, S . . .
Using Toup = | CJl and an explicit time-stepping scheme, one can advance every two iterations. More
redundant computations are performed.
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e there is no need of red-black sequences

16 /24



XT-RAS and Pipeline strategies

One could solve all subdomains in space instead of alternating between the red and black ones:
u=u"+ Y RIAR(f - Au”).
kekopace
Using Toup = ‘—;l and an explicit time-stepping scheme, one can advance every two iterations. More
redundant computations are performed. However, since one already iterates,
e one may use implicit time-stepping schemes and smaller overlap,
e there is no need of red-black sequences

e one may adapt/control the advancing subdomain solution front and tail:

| i

HRke.j(f - Aun)Ho@ <e€ —d Jj> l z J +1

Nwr

Kn = {kg]el' {eKx,jeNy with j < min <NT L\Y J+1> and | Ry, , (f — Au” )Hw>e},

where 7 := {1,...,NTN)(}, ]CX = {1,...,Nx}, NWR€N+, and € > 0.



Adaptive choice of the subdomains time length

By monitoring the local residuals |Ri(f — Au™)]|,,, one can estimate Tiy at the first iteration:
e Guess an initial Tsub init-
e Perform Ny g iterations on the first strip in time of subdomains of length Tiup init-
o Compute Tiup as the largest time such that the residual is smaller than e.

T |ri] < eVi |ri*| > € for some ¢

92

M

Tsub

Tsub init

For Nwr = 2 and an explicit integrator, this leads to the tent heights in the (un)mapped strategy.
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Numerical experiments

4
Q
zl.!!i

https://lymph.bitbucket.io/

«O> 4F>» «E>» «E>» =

Da
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n by
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1.870 0.03 1.8 ‘ 2 .
1.6 | 0025 1.6 - .
- 002 H- |, @ Analytical solution
1 g fos U - ¢(x,y,t) = 2” sin(mz) sin(my) sin(rtv/2),
05 g RS Y(a,y,t) = dep(z, Y, t),
el N Dirichlet bound diti
o 0,005 . os @ Dirichlet boundary conditions
0 - o - |
1 0 1 1 o 1
y X y X

Active subdomains 16 / 320
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by . by )
2 -y || 2 -y 2
1.8 - L8 - |18
Iteration:
Lo-ugp (| 16-<f [16 i
1o o 1o e @ Analytical solution
L2 - L2 - |12
1 | - | ¢(x,y,t) = 2° sin(rz) sin(ry) sin(ntv/2),
0.8" 0.15 0.8 ‘ 0.8 1#(96,2/,75) = 6“0(:5,3/,15),
0.6 - 06 fos
01 @ Dirichlet boundary conditions
0.4 - 04 foa
0.2 gy | 0.2 ‘ 02
o g |, 0 ’ 0
1 0 1 1 o 1
y X y X

Active subdomains 48 / 320
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Pn B Yn B
D oo 2 -l
15 - } L5l [|5
6. los 6. Iteration: 21
v L- @ Analytical solution
12 - 12 g
Y- | 1 - o(z,y,t) = 22 sin(rz) sin(ry) sin(mty/2),
08 g fos 0@ | Y(x,y,t) = dvp(2,y,t),
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Pipeline Algorithm: T' = 2, Ny

Pn - Un -
? - 0.35 S '
1.8~ ‘ 1.8 ’
103 Iteration: 3
1.6 —r- 1.6—70 1 _
B il (X5 - 05 @ Analytical solution
1.2 ‘ 1.2 ’

o 0.2 o 2 . . .
1 - 1 L | o(z,y,t) = 22 sin(rz) sin(ry) sin(mty/2),
- o5 05 Y(x,y,t) = dup(z, y, b),

0.6 - < 0.6 ’ 05
s 01 o @ Dirichlet boundary conditions
¢ g i, e — il B
1 0 1 1 o 1
y X y X

Active subdomains 75 / 320
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Yn

I
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o

Tteration: 4

@ Analytical solution
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Pipeline Algorithm: T = 2,
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@ Analytical solution

o(z,y,t) = 22 sin(rz) sin(ry) sin(mty/2),
1#(% Y, t) = 6t80(957 Y, t)7

@ Dirichlet boundary conditions
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Comparison: T'= 2, Nx = 16, Ny = 20, Ny

Relative residual € =1.e-6

dofs iterations | time [s]

192.000 85 209
XT-RAS 576.000 100 1753
1.280.000 95 8901

192.000 75 205
GMRES-RAS | 576.000 7 1392
1.280.000 72 6956

192.000 92 39

Pipeline 576.000 97 369
1.280.000 98 1937

Remarks: No parallelization used!

relative residual

10?

10°

——GMRES-RAS
XT-RAS
——PIPELINE
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Comparison with GMRES in the single slab

Relative residual € =1.e-6

[ Yn ~
dofs time [s] : - | -y s
192.000 10 1 gy —
L6 iy [{02 Lol |[{*
MRE . 1
GMRES | 576.000 36 . o
(slab) 1.280.000 1536 12 -l : 12 g o
2.560.000 | 18795 ey |0 - |
192.000 39 v - |, oregy
Pipeline | 576.000 369 . e
4 g 4 N
1.280.000 | 1937 N |.
2.560.000 | 4185 > o el s
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-
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Acoustic wave impacting a cylinder [Artoni, Ciaramella, Mazzieri, 2024]

E o Discretization paramters
_ = !
< - (] % .
> ) 02 04 06 08 1 ha & 36.5 m in Qout
Time [s] N . ,
0.04 . . o hp ~ 11.8 m In Q,m
=, ° _
Z 0.02 p=3
£
=, @ At=00lsr=1
0 20 40 60 . .
xtml Frequency [Hz] Space-time partition

@ Nx =16, Ny =25
@ Dirichlet boundary condition ¢(x,t) = ga(x,t) on the bottom edge X T

@ Vo(xz,t)-n =0 on the lateral and top edges
@ ¢ =150 m/s in Qout and ¢ = 1500 m/s in Qip,
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Acoustic wave impacting a cylinder [Artoni, Ciaramella, Mazzieri, 2024]

~—
—— 2.e405
—_—
150000
100000
Iteration 15 Tterationds .
5
o(x.t) so000 2
ot g
s a1 05w e 1 s a5 1 05 0 05 1 15 4
—— RS — — — o
e — 50000
S —— e
—— — —
_ — - _ -~ et05

Time: 0.00s

Iteration 90 Iteration 135




Conclusions & perspectives

Conclusions
@ For Space-time dG discretization of wave problems on polytopal meshes we proposed:

@ a parallel XT-RAS framework;
@ relations and comparison with the tent-pitching algorithms;
@ choice/computation of subdomain time length.
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Conclusions & perspectives

Conclusions
@ For Space-time dG discretization of wave problems on polytopal meshes we proposed:

@ a parallel XT-RAS framework;
@ relations and comparison with the tent-pitching algorithms;
@ choice/computation of subdomain time length.

Ongoing work
@ Unmapped Tent Pitching in higher dimension.
@ Improve the strategy for non-constant coefficients.
@ Relation with other pipeline approaches (Kwok, Ong (2019), Malas, Keyes (2016))
@ Adaptivity
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