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Structure of RC 4

Research Cluster 4 will consider some “proof of concept applications”
both from the practical/computational and the theoretical standpoint.

@ Geological flows
o Design and analysis of mixed schemes for multi-phase flows
o Fractured media
@ Coupling flows and porous media deformations

@ Magnetohydrodynamics
o Design and analysis of robust methods for the incompressible
Navier-Stokes and Maxwell equations
o Coupling and analysis of the full MHD system
o Efficient resolution of the resulting coupled system of PDEs
o Particular attention to parameter robustness



Geological flows

Applications, for instance, in:

@ Reservoir simulation
@ Basin simulation

@ Waste storage, CO?
sequestration




A glance at the polyhedral literature in G.P.F.*

* sorry ... many important names missing!

Some main models/problems are:
@ Discrete Fracture Networks

@ Flow in fractured (and/or “bad” coefficients) media (matrix and
fractures)

@ Multi-phase flows, “thermo-aware” models,...

@ Solid-mechanics aspects (contact, poro-mechanics,
elasto-dynamics, ...)

Some main polytopal techs already on-the-field:
@ Mimetic Finite Differences (BdV, Formaggia, Lipnikov,..)
@ Gradient Schemes (Bonaldi ,Droniou, Masson, ..)
@ Virtual Elements (BdV, Berrone, Brezzi, Dassi, Faille, Masson, ..)
@ Hybrid High Order (Botti, Chave, Ern, Di Pietro, ..)
@ Polytopal Discontinuous Galerkin (Antonietti, Mazzieri, Verani, ..)
@ Discrete De Rham (Di Pietro, Droniou, ..)



Magnetohydrodynamics

Applications, for instance, in:

@ Space physics
@ Geophysics

@ Engineering

north

between reversals

during areversal



A classical model in MHD (four fields)

Let Q c R3. We search for
@ u:[0, 7] = R3 velocity field; p:[0,T] = R pressure field
@ B: [0, T] — R3 magnetic ‘field’ E: [0, T] — R3 electric field

that satisfy the equations (at all admissible times)

(potu+ p(Vu)u—vAu —jx B+ Vp=Hf in Q,
j—p 'curlB=0 inQ,

o:B+curlE=0 in Q,

j=0c(E+uxB) in Q,

(divB=0,divu=0 inQ,

coupled with initial conditions (on u and B) and boundary conditions,

e.g.
u=0, B-n=0, Exn=0 onoQ.



A classical model in MHD (three fields formulation)

By eliminating the electric field, one obtains the alternative equations
for

o u:[0, 7] - R3 velocity field;
@ p:[0,T] =R pressure field
@ B:[0,7] = R® magnetic ‘field’ ,

that need to satisfy
pdu+ p(Vu)u — Re 'Au+p 'BxecurlB+Vp=Ff inQ,
B +curl(op) 'eurlB—curl(uxB)=0 inQ,
divB =0,divu=0 in Q,

coupled with initial conditions (on u and B) and boundary conditions,
e.g.
u=0, B-n=0, curlBxn=0 onoQ.



A rich Finite Element literature

A few, among the many, involved names:

L. Chacon, R. Codina, J. Evans, F. Gay-Balmaz, J.-F. Gerbeau, J.L.

Guermond, M.D. Gunzburger, Y. He, R. Hiptmair, P. Houston, K. Hu, W.
Layton, A. Prohl, D. Shotzau, J. Xu, ...

Setting variety in the literature:
@ stationary or time-dependent problem
@ different formulations (different fields or potentials)
@ regular or non-regular domains (Hgivrcur VS. H')
@ many choices of FEM

@ focus on different aspects/difficulties (next slide...)



Some (numerical analyst’s) challenges

Many different aspects are investigated:

@ time-stepping choices (implicit/explicit, coupled/uncoupled, ...)
@ associated nonlinear solvers (convergence of iterations, costs,...)

@ convergence analysis (with order for regular solutions, or for
“vanishing discretization” parameters)

@ robustness to high Reynolds and associated stabilizations (theory
generally only for linearized case)

@ conservation of quantities (solenoidal conditions for u and B,
magnetic and cross helicities, ...)

@ energy stability, preconditioners, ...

Some NEMESIS assets:

Robust for polyhedral meshes, many complexes easily handled, a
focus on efficiency (solvers, adaptivity,..).



Variational formulation of the three field equations

We assume a convex domain Q and constant coefficients

Find u € L(0, T; L2()) N L2(0, T; HY(Q)), p € L2(0, T: [3(Q)),
B e L>(0, T; L2(Q)) N L3(0, T; H},(Q)), such that for a.e. t € [0, T]

(aa_ltl’ V> +rs8>(u,v) + c(u;u,v) — d(B; B,v) + b(v,p) = (f,v),

b(u,q) =0 Vv € H}(Q) , Vg € L5(),

(%H) +wa"(B,H) + d(B;H,u) = (G,H)  vH € H)(Q),

coupled with initial conditions (div B(-,0) = 0).

a(u,v) = (e(u), e(v)), clxu,v)=((Vu)x, v),
a¥ (B, H) = (curl(B), curl(H)) + (le(B) ,div(H)),
b(v,q) = (divv, q), d(©;H,v) = (curl(H) x ©, v).



The discrete problem (type 1)

The following approach was initially proposed in [BdV, Dassi, Vacca,
SINUM, 2024] for the (stationary) linearized case and later generalized
[ArXiv, and submitted] to the (evolutionary) nonlinear case.

’ Discrete spaces:‘ (k > 1)

VI = [Pr(Q4)]° N Ho(div) velocity field ,
Q = Px_1(Qn) N L3(Q) pressure field,
W1 = [P(Qp)]2 N HL(Q) magnetic field.

The non-conforming couple (V7}, Q}'), combined with upwinding, is a
very robust choice for incompressible fluids, see for instance
[Barrenechea, Burman, Guzman, 2019], [Han, Hou, 2021].

Note that the convexity of the domain allows us to safely use an
H'-conforming space for the discrete magnetic field.



The discrete problem (type 1)

Find uy € L°(0, T; V), pr e L2(0, T; Qf), By e L>(0,T; W),
such that fora.e. t € /

\

ou
(8_1‘,7’ Vh) + vs@y(Un, Vh) + Ch(Up; Up, Vi) — d(Bp; Bp, Vi)

+ Jn(Bh; Un, Vi) + b(Vh, pr) = (F, Vi) Yvj € V],
b(up,qn) =0 Vgn € Q,’Z,

oB
(a_th’ Hh) + vma” (Bn, Hp) + d(Bp; Hp, up)+

+ (div By, div Hy) = (G, Hp) YH, € W1,

coupled with initial conditions.



The discrete problem (type 1)

Find up € L0, T; V), pn e L?(0, T; Qf), By c L=(0,T; W),
such that fora.e. t € /

\

ou
<a_th’ Vh) + vsay(Un, Vi) + Ch(Up; Up, Vi) — d(Bp; Bp, Vi)

+ Jn(Bh; Un, Vi) + b(Vh, pr) = (F, vh) Yvj € V],
b(un, qn) =0 Van € Qf,

oB
(8_t‘h’ Hh) + vma@" (Bn, Hp) + d(Bp; Hp, up)+

+ (div By, div Hy) = (G, Hp) YHp € W1,

coupled with initial conditions.

aj(Un, vi) = (en(Un), en(vh)) — > ({Len(un)ne e, [valn)i+

fexy

— > (Lunls, en(va)ne B)r+pa Y b7 (Lunls [vale)s

fexy, fexy



The discrete problem (type 1)

Find up € L0, T; V), pn e L?(0, T; Qf), By c L=(0,T; W),
such that fora.e. t € /

\

ou
(8_1‘/7’ Vh) + vs@(Un, Vh) + Ch(Up; Up, Vi) — d(Bp; Bh, Vi)

+ Jn(Bh; U, Vi) + b(Vh, pn) = (f, vp) Vv, € V],
b(un, qn) =0 Van € Qf,

oB
(8_t‘h’ Hh) + vma@" (Bn, Hp) + d(Bp; Hp, up)+

+ (div By, div Hy) = (G, Hp) YH, € W},

coupled with initial conditions.
ch(x; Un, Vi) = (Vatn) X, Vi) = > ((x - np)[unls, {va )i+

fexin

+pe > (Ix - nellunls [valo)s

fexin



The discrete problem (type 1)

Find up € L0, T; V), pn e L?(0, T; Qf), By c L=(0,T; W),
such that fora.e. t € /

( /Ou
(a—th, Vh) + vs@y(Un, Vh) + Ch(Up; Up, Vi) — d(Bp; Bh, Vi)
+ Jn(Bh; Up, Vi) + b(Vh, pn) = (f, v) Yvh € V],
b(un, gn) =0 Yan € Qf,

oB
(8_z‘h’ Hh> + vma@ (Bp, Hp) + d(Bp; Hp, up)+

+ (div By, div Hy) = (G, Hp) YH, € W},

\

coupled with initial conditions.

In(©;up, Vi) = 3 max{ 1Oy, 1} (1 (LunTr [VaTo)s

fexin

AN [[Vth]]f)f>



The discrete problem (type 1)

Find up € L0, T; V), pn e L?(0, T; Qf), By c L=(0,T; W),
such that fora.e. t € /

\

ou
(8_:’ Vh) + vsay(Un, Va) + Ch(Up; Up, Vi) — d(Bp; Bh, Vi)
+ Jn(Bp; Up, Vi) + b(Vh, pp) = (F, vp) Vv, € VI,

b(un, gn) =0 Van € Qf,

oB
(8_t‘h’ Hh) + vma@(Bp, Hp) + d(Bh; Hp, up)+

+ (div By, div Hy) = (G, Hp) YH, € W],

coupled with initial conditions.

(div By, div Hp) ‘strong’ grad-div stabilization on B,

(not needed in the linearized case)



Interpolation for the magnetic field

CIP analysis is typically based on suitable orthogonality properties.

In order to avoid a quasi-uniformity mesh assumption and Nitsche
imposition of BCs, we introduce Zy : W — W? satisfying

(H-IwH, q_4) =0  forany q,_ € [Ok_1()]°
where
Ok_1(Qp) =P (Qp) fork >1,  Ox_1(Qn) :=Po(Qp) for k = 1;

plus standard LOCAL approximation estimates in L2 and H'.



Interpolation for the magnetic field

CIP analysis is typically based on suitable orthogonality properties.

In order to avoid a quasi-uniformity mesh assumption and Nitsche
imposition of BCs, we introduce Zy : W — W? satisfying

(H-IwH, q_4) =0  forany q,_ € [Ok_1()]°
where
Ok_1(Qn) =P (Qp) fork >1,  Ox_1(Qp) :=Po(Qp) fork =1;

plus standard LOCAL approximation estimates in L2 and H'.

NOTE: | It exists a projection operator Zp : Px_1(24) — Ok_1(Q25) such
that for any px_1 € Px_1(24) the following holds:

> el (= Zo)pk-alle £ > Helllpk-1 1617

EcQy fEZi,‘]“



Theoretical results (linearized stationary case)

Under standard mesh shape regularity, it holds

2 2
||u - uhHstab + HB - BhHM 5
(N2 + T8+ T8RP UZ, o, + (A8 +TR)RPKIBZ, o,

where
2. 2 2 -1
A = max{ash i@ 1Oy ws(1 + p1a + 11z )},

/\1%/1 = max{aMhz,m}
r§ := min{og H?, vg A} |xI[5, (@) T o5 WO 5, @, T h

2 .= min{oy h?, v 1/74}||G)||Wtoo(Q,,)



Theoretical results (linearized stationary case)

Under standard mesh shape regularity, it holds

2 2
||u - uhHstab + HB - BhHM 5
(N2 + T8+ T8RP UZ, o, + (A8 +TR)RPKIBZ, o,

where

A

[20)\V]

= maX{O‘s/’l2 , ||X||Loo(Q)h, ||O||foo(ﬂ)h, I/s(1 + Ha + ,U;I)} 5
/\1%/1 = max{aMhz,m}
r§ := min{og H?, vg A} |xI[5, (@) T o5 WO 5, @, T h

2 .= min{oy h?, v 1/74}||G)||Wtoo((z,,)

@ Also optimal pressure estimates in L? hold;

@ there hold also convergence results by compactness, in a weaker
sense, to non regular solutions.



Theoretical results (nonlinear case, type 1)

Under standard mesh shape regularity, it holds
I(u = up)(-, T + [[(Br — Br)(-, T)|1?

T T
+ [ lw— Ol + [ 18- BaC I
S (Agtab“u|’i2(0’7';wk+1 () + Agf“BH%Z(QT;HI(H(Qh)))h2k
<||u“H1 0,T;H*1(Qp)) + HB”H1 (0,T;H"(Qp ))>h2k+2=

where

N = max {us(1+ pa+ 13" AOZ + D} A= (o +1).



Theoretical results (nonlinear case, type 1)
Under standard mesh shape regularity, it holds
I(u = up)(-, T + [[(Br — Br)(-, T)|1?

T T
" /0 1 — un) ()2 + /O I(B— By~ 1)l

S (Ml 7wt ) + NI B0 7oty ) P
(112 0 7oty + B0 gy ) P2
where
A2, := max {1/3(1 +pat+uz'), h(e, + 1)} : N = (v +1).

@ Quasi-robust and pressure-robust;

@ lacks the O(h*+1/2) pre-asymptotic error reduction in convective
regimes (responsible identified: solenoidal By, condition)



The discrete problem (type 2)

Find up € L>°(0, T; V), pn e L?(0, T; Qf), By c L=(0,T; W),
©n € L>(0, T; R, such that for a.e. t € /

ou
<8_th’ Vh) + vsay(Un, Vi) + Ch(Un; Up, Vi) — d(Bp; Bp, V)

+ Jn(Bh; Un, Vi) + b(Vh, pn) = (f, vp) Vv, € V],
b(up, qn) =0 Vagy € QF,

B
(%’ Hh) + VMaM(Bhu Hh) + d(Bh; H;, uh)+

+ Kn(Un; Bn, Hy) — b(Hp, o) = (G, Hp) YHp, € WY,
| Yn(on, ¢n) + b(Bh,bn) = 0 Wiy € RY,

Ri = PR™(Qn) N LE(Q)



The discrete problem (type 2)

Find up € L0, T; V), pn e L?(0, T; Qf), By c L=(0,T; W),
©n € L>(0, T; R, such that for a.e. t € /

([ ou
(8_2‘17’ Vh) + vsa@(Un, Vi) + ch(Up; Up, vi) — d(Bp; Bp, vi)

+ Jn(Bp; Un, Vi) + b(Vh, pn) = (f, vh) Yvh € V],
b(uh, qh) =0 th € Q;,(’,

oB
(6_1‘/7’ Hh) + vma@ (Bp, Hp) + d(Bp; Hp, up)+

+ Kn(Up; Bn, Hp) — b(Hp, o) = (G, Hp) YHp € WY,
| Ya(on 1n) + b(Bn, 1n) = 0 Vb € R,

Ya(on tn) = ny > BE([Venln [Venle):-

fexin



The discrete problem (type 2)

Find up € L0, T; V), pn e L?(0, T; Qf), By c L=(0,T; W),
©n € L>(0, T; R, such that for a.e. t € /

( [Ou
<8_th’ Vh> + vsa@(Un, Vi) + Ch(Up; Up, vi) — d(Bp; Bp, Vi)

+ Jn(Bh; Up, Vi) + b(Vh, Pr) = (F, Vi) Vv, € V7,
b(un, gn) =0 Vg, € Qf,

oB
(50 Hn ) + i (B, Hi) + (B Hi, )+

+ Kn(up; B, Hp) — b(Hp, o) = (G, Hp) YHp € W],
Ya(on, ¥n) + b(Bp, vp) = 0 Voo, € RP,

Kn(x; B, Hn) = pc Y 1 max{||x /|7y 1HI VBA 11, [ VHA])s -
fexin



Theoretical results (nonlinear case, type 2)

Under standard mesh shape regularity, it holds
I(u = up)(-, TIZ + [(Br — Br)(-, T)|[*+
T T T
+ [ = )12, at+ 1B =B dt+ [ Ten 0, at <

( stabHuH[_z(o T: Wk+1(Q )) + /\4f||B||L2 0, THk+1(Q )))h2k

+ (“uHH1(0 THk+1(Q )) + ”BHH1(0’T;Hk+1(Qh)))h2k+2 ’

where
Aézlf = maX{VM ) h(’ygata + 1)} .

@ Quasi-robust and pressure-robust;
@ enjoys the O(h**+1/2) pre-asymptotic error reduction in convective
regimes.



A “basic” numerical test

We consider a model problem on a unitary cube, time interaval [0, 1],
with known regular solution.

Considered space-time (squared) norms:
T
&5 = u(-, T) — un(-, T)Il5 +/O lu(-, £) = un(-, )5 At
2 4 2
5= | It-0-put- 0l et )

/
e = [|B(, T) — Bn(-, T)ll3 +/O IB(-, 1) — Bn(-, 1) dt.



Velocity field error

€u €u
10! T 10! T
v = 1.0e — 00| : v = 1.0e — 00|
v = 1.0e — 05| I v = 1.0e — 05
v = 1.0e — 10 - v = 1.0e — 10
10°
107!
oty oy
2 -2
10 107" 10° 10 107 10°
h h

Type 1 Method Type 2 Method



Pressure field error

10’

T - 10! T

v = 1.0e — 00| : v = 1.0e — 00|

v = 1.0e — 05| I v = 1.0e — 05

v = 1.0e — 10 i v = 1.0e — 10
10°
107!

2 -2
10 107" 10° 10 107 10°
h h

Type 1 Method Type 2 Method



Magnetic field error

eB €B

v =1.0e — 00 : 0 =1.0e—00

v = 1.0e — 05| I v = 1.0e — 05

v = 1.0e — 10 1 v = 1.0e — 10
10°
107

(hl.s),—" (h”))""
0 107" 10° 0 107 10°
h h

Type 1 Method Type 2 Method



Variational formulation of the four field equations

Find u € L>°(0, T; L3(Q)) N L2(0, T; H}(Q)),
E € [2(0, T; Hy(curl, Q) B € L=(0, T; L2(Q)
such that for a.e. t € [0, T]

T
om
'\

N

(ut,v) + vsa(u,v) + b(v,p) + c(u;u,v) — (j x B,v) = (f,v)
w e [H(Q)
(j,F) —vm(B,curlF) =0 VF € Hy(curl, Q)
(B¢, C) + (curlE,C) =0 VC € Hy(div,Q)
[b(u,q) =0 vqeLy(Q).

where j=E +u x B and

a(u,v) =(Vu,Vv), b(v,q) = —(divv,q)
c(w;u,v) = ((Vu)w,v).

Note: plus initial conditions, satisfying divB(0, -) = 0.



Two Exact Complexes

i | v curl ] dv ., 0]
0 — Hy(2) — Hy(eurl, Q) —— Hy(div,Q2) — L5(2) — 0

i 5 v ’ div | 0
0 — H5(Q2) — Hy(Q) — H'(Q)/R — 0



Two Exact Complexes

i | v curl ] dv ., 0]
0 — Hy(2) — Hy(eurl, Q) —— Hy(div,Q2) — L5(2) — 0

i 5 v ’ div ; 0
0 — H5(Q2) — Hy(Q) — H'(Q)/R — 0

At the discrete level: (talks by Mascotto & Dassi)

v curl div
VﬁODE Vidge V;‘;ace VELEM
@ v, curl TN\ ) dv

i v div 0]
0O — S — W, — Q, — 0

[LBdV, Brezzi, Dassi, Marini, Russo, SINUM & CMAME, 2018]
[LBdV, Lovadina, Vacca, M2AN 2017] [LBdV, Dassi, Vacca, M3AS 2020]



A VEM formulation

Find (U, pn, En, Bp) in W x Qy x V89 5 Vface sych that for a.e. t € /

[ Mp(Upt, Vi) + vs @n(Un, Vi) + B(Vh, Pn) + Ch(Un; Up, Vi)
+ [ins X(Vh, Bn)] ggge = (F.119VA)  WVp € W,

[jh’ Fh] edge VM[Bh’ curIFh] face = 0 VFh € Vﬁdge,
[Bh,h ch] face + [curlEh, Ch] face = O vch c V;‘)ace7

lb(uh, qh) =0 th S Qh.

@ Formulation for FEMs in [Hu, Ma, Xu, Numer. Math. 2017]
(without an Ex. Complex for fluid part)

@ VEM scalar products and discrete forms appearing above
@ Preserves divu = 0 and div B = 0 exactly.
@ Article is for lowest order VE spaces (extendable ...)



A convergence result

Let [BdV, Dassi, Manzini, Mascotto, M3AS 2023]
uel?0,T;[H*Q)®), ow,E fel?0,T;[H(Q)]),
B,je L2(0, T; [H'(Q) N L=(Q)]®) .
Then it holds '
Jut) ~ un()] + [BCO) - Ba(o)] + ( | E- Eil?) < ch.
with C indep. of hand a.e. t € [0, T].

@ Holds under standard mesh assumptions

@ The analysis applies also to the FEM case (no convergence
theory was developed in the FEM case for this approach)

@ Estimates do not depend on pressure
@ Estimates are not v-robust



Mesh families:

TavBAT
level 1 level 2 level 3 level 4
tetra 4.6977e-13 7.8962e-13 3.3856e-12 1.6680e-11
cube 1.1798e-13 2.2284e-13 6.6499e-13 2.2580e-12
voro 2.9645e-11 6.4690e-13 1.7873e-11 5.3376e-11
[divupl
level 1 level 2 level 3 level 4
tetra 7.6676e-16 2.0355e-15 1.0726e-14 6.1851e-14
cube 1.1714e-15 1.9226e-15 7.3605e-15 4.0470e-14
voro 2.7855e-16 3.2315e-15 1.6780e-14 8.8101e-14

@ Standard error plots comply to the theory (see article).




Conclusions (RC4)

@ We presented Research Cluster 4, focused on Geophysical Flows
and Magnetohydrodynamics

@ We have briefly presented the area of Magnetohydrodynamics in
Numerical Analysis

@ We have shown two stabilized Finite Element Methods that are
pressure robust and convection quasi-robust (3-field and 4-field)
for the fully nonlinear non-stationary model

@ The 4-field method enjoyed also an improved pre-asymptotic error
reduction rate in convection dominated regimes

@ We have furthermore presented a VEM approach, based on
Virtual Element Complexes, for a different four field formulation of
the same model; both solenoidal constraints are satisfied
“exactly”.



Appendix: error norms

Velocity field:
Ul = len()]? + 1 > by ILulfl?
fexy
U, = D [llun- o2 u]y?
fexin
uf, g, = > maxdl1BallFe 1} (ITUlilE + IV pulil?)
fezml

2 2
lulZias = vslUllf p + (UG, + U5, B, -
Magnetic field (type 1):
IWlln = ]|V W[ + ||divw?.
Magnetic field (type 2):

Wil = ol Vw2 S max {1, uplFei,) | EOVWITVWI); -
fexin



