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Context and motivation

Context: Analysis of time-harmonic electromagnetic (EM) scattering phenomena by a complex 3D object in radar stealth or EM compatibility
applications. The object can
= be electrically large (A4 «< L, L is the object charact. size)

= consist of several homogeneous (isotropic) components of disparate sizes

Motivation: Accurate evaluation of scattered fields using boundary integral equations =» boundary element method (BEM) that are
= Fast (necessity of only surface mesh of the domain = 2-manifolds)
= Accurate (explicit knowledge of the fundamental solution of PDE)

Scattering simulation of an electrically large UAV
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Context: Analysis of time-harmonic electromagnetic (EM) scattering phenomena by a complex 3D object in radar stealth or EM compatibility
applications. The object can

= be electrically large (A4 «< L, L is the object charact. size)
= consist of several homogeneous (isotropic) components of disparate sizes

Motivation: Accurate evaluation of scattered fields using boundary integral equations =» boundary element method (BEM) that are
= Fast (necessity of only surface mesh of the domain = 2-manifolds)
= Accurate (explicit knowledge of the fundamental solution of PDE)

» CEA’s in-house code based on classical BEM [Augonnet et al., 2019]
= Triangular surface meshes
= Fast direct solution algorithms (LU, H -matrix technique)
= Hybrid shared-distributed parallelism

Scattering simulation of an electrically large UAV




Context and motivation

Context: Analysis of time-harmonic electromagnetic (EM) scattering phenomena by a complex 3D object in radar stealth or EM compatibility
applications. The object can

= be electrically large (A4 «< L, L is the object charact. size)
= consist of several homogeneous (isotropic) components of disparate sizes

Motivation: Accurate evaluation of scattered fields using boundary integral equations =» boundary element method (BEM) that are
= Fast (necessity of only surface mesh of the domain = 2-manifolds)
= Accurate (explicit knowledge of the fundamental solution of PDE)

Difficulty: Classical BEM are well established and adapted to HPC but ...

... hot robust to hanging nodes!

> Lack of flexibility in handling “optimal” mesh obtained e.g. by
» Local refinement / coarsening

» Gluing together various meshes of different densities

Complex scatterers =» overly dense meshes (intractable problems)

Scattering simulation of an anechoic chamber (e.g. 10M to 100M of unkn.s)



Context and motivation

Context: Analysis of time-harmonic electromagnetic (EM) scattering phenomena by a complex 3D object in radar stealth or EM compatibility
applications. The object can

= be electrically large (A4 «< L, L is the object charact. size)
= consist of several homogeneous (isotropic) components of disparate sizes

Motivation: Accurate evaluation of scattered fields using boundary integral equations =» boundary element method (BEM) that are
= Fast (necessity of only surface mesh of the domain = 2-manifolds)
= Accurate (explicit knowledge of the fundamental solution of PDE)

Difficulty: Classical BEM are well established and adapted to HPC but ...

... hot robust to hanging nodes!

» Lack of flexibility in handling “optimal” mesh obtained e.g. by
» Local refinement / coarsening
» Gluing together various meshes of different densities

Complex scatterers =» overly dense meshes (intractable problems)

Example of polygonal mesh

A solution : Conforming approximations on general meshes = Virtual element method (VEM) for BEM [Touzalin, 2025]
> Use of flexible polygonal meshes to capture EM details



Practical examples of EM benchmarks [1/2]

Analysis of shielding effectiveness of a metallic box with a very thin slot

2000mm
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5000mm

M s

O Accuracy and performance Triangular mesh for BEM Hybrid (polygonal) mesh for V-BEM

—HE— bem

Computational cost

(assembly)
BEM 64 654 813 s
V-BEM 30 079 321s
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Modulus of scattered field E inside cavity (dB) vs. frequency (MHz)
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Practical examples of EM benchmarks [2/2]

Analysis of radar signature (scattered far fields) of a metallic cone-sphere with gap

plane wave

o The gap width is 1% of the cone-sphere length.

O Accuracy and performance

—H—  pem

—A—  y-bem
Ref. axi-sym. Hybrid (polygonal) mesh for V-BEM

| Computational cost
(assembly)

BEM 61 662 5160 s

180 V-BEM 59 783 4480 s

Radar signature (dB) vs. observation angle (degree)
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MODILLON : an in-house mesh handling library

User-friendly Python API based on the Gmsh APl (Gmsh model as pivot format) designed to share all in-house
developments concerning the handling of classical meshes

Main goals:

= Read/Write different file formats (abaqus, I-DEAS universal, ...) RE

= Provide mesh informations (element description, element quality, free boundary edges, ...)

=  Manipulate/modify meshes (extrusion of a 2D mesh, extraction mesh parts, ) ﬂ

= Check meshes according to code-specific criteria (orientation, mesh size, ...) ’

Up-to-date library can handle:
» Large variety of mesh formats (meshing libraries or simulation codes, in-house or commercial)

> Meshes with hundreds of millions of elements (triangles, quadrangles, tetrahedra, hexahedra, ... )



Early strategy for the generation of meshes of flat polygons

> Fully polygonal meshes (numerical method validation, debug purposes)
Use of the open-source library Voro++ (in combination with Gmsh if needed) =» many mesh formats (.voro, .vtk, .vbem, .msh) !

1st plane

NbEdges

100
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Early strategy for the generation of meshes of flat polygons

> Fully polygonal meshes (numerical method validation, debug purposes)
= Use of the open-source library Voro++ (in combination with Gmsh if needed) = many mesh formats (.voro, .vtk, .vbem, .msh) !

1st plane

NbEdges

100
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] ) Mesh of a sphere Mesh of the NASA almond
» Hybrid meshes (real-life problems)

*  Gluing different Gmsh meshes =» many mesh formats (.msh, .vtk, .vbem) !

1st step : Recover the nodes of the coarser mesh at 2nd step : Generate the finest mesh on the basis of
the interface the coarse nodes

10
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d Mesh of slotted box Mesh of a cone-sphere



Our needs in relation to (curved) polytopal meshes

Pre-processing
» Generation of polygonal meshes via Gmsh (by dual mesh or aggregation?)

= Taking into account polygons into mesh formats (via msh files)
= Ability to guide the mesh generation according to a local mesh size field (as for classical elements)
= Definition/control of the orientations of normal vectors within the mesh of each physical surface

= What about curved polygons? (e.g. a practical approach satisfying hyp. 22 of [Droniou et al.,2025])

Normal vectors related to a polygonal mesh

» Check the mesh regularity via Gmsh

= Definition of quality criteria in the context of polygons (translation of theoretical hyp.s on mesh regularity, e.g. [Sorgente et al., 2022])
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Our needs in relation to (curved) polytopal meshes

» Manipulation of mesh within the code
= Treatment of singular integrals of type f fL If(xy) dLy,dKy, with a = 1,2

=>» access (via e.g. Gmsh API) to a “good” triangulation of mesh polygons (e.g. partition into a min number of triangles)
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Examples of common point configurations Examples of common edge configurations Example of identical polygons configuration

Post-processing

» Visualization via Gmsh
= Provide exact representation of VEM projection of solution on polygons (cf. the polygon triangulation topic)

What about meshes of polyhedra ? (FEM-BEM coupling approaches, CFD applications, ... )
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Appendix: a simple model problem

> Time-harmonic Maxwell’s equations (e ~‘“t) € pu = const

n

( curlE —wxZgH = 0 inR3\Q, [": non-smooth
curlH+wZy'E = 0 inR3\Q,
) Exn = 0 onrl,
: I X ! _
i (Zo(H = H)(x) » o (E-E )(x) =0 Een_o
J=nxH
» Weak formulation of the electric field integral equation X &v
. — _1/ . )
Find JeX=H 2(divp, 1), such that, k > 0 : (EI H’) (Es HS)
plane wave scattering wave
a(,])) = fU", v]' € X.

o a(.)) = [ Gex = I T ®dyydy, — = [ Ge(x = y)dive(J3)) dive (' (x))dy, dys,

e”€|X—)’|

< fU) =KL7OfF m E'(x) - J'(x)dy,, with Ge(x—y) = X#*Y.

4m| x—y|’

» Galerkin discretization using Raviart-Thomas finite elements (BEM)

Find J, € X,, € H(divr,T'), such that :

a(Jn,Jn) = UL, V], € Xp,

:
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» Galerkin discretization using virtual elements (V-BEM)

Find J, € V;, € H(divr, T'), such that :

an(nJw) = ), V], €V,

:



